UIT115

Manual de Usuario

Documento: 1332_UIT_09_02 Fecha Publicación: 15/09/2023 Revisión Documento: 02 Versión Hardware Producto: 1.2

Tel +598 26220651 Fax +598 26222048 www.controles.com

AVISO LEGAL

Los datos, ejemplos y diagramas en este manual se incluyen únicamente para el concepto o la descripción del producto y no deben considerarse como una declaración de propiedades garantizadas. Todas las personas responsables de aplicar el equipo descrito en este manual deben asegurarse de que cada aplicación prevista sea adecuada y aceptable, incluido el cumplimiento de los requisitos de seguridad aplicables u otros requisitos operativos. En particular, cualquier riesgo en aplicaciones donde la falla del sistema y/o la falla del producto crearían un riesgo de daño a la propiedad o las personas (incluidas, entre otras, lesiones personales o muerte) será responsabilidad exclusiva de la persona o entidad que aplique el equipo. Por la presente se solicita a los responsables que aseguren que se tomen todas las medidas para excluir o mitigar dichos riesgos.

Este documento ha sido revisado cuidadosamente por Controles S.A. pero no se pueden descartar por completo las desviaciones. En caso de que se detecte algún error, se solicita al lector que notifique al fabricante. Aparte de los compromisos contractuales explícitos, Controles S.A. no será responsable en ningún caso de ninguna pérdida o daño que resulte del uso de este manual o la aplicación del equipo.

PRECAUCIONES DE SEGURIDAD

Antes del primer uso, para realizar una instalación, puesta en servicio o mantenimiento, leer la documentación del equipo para garantizar un funcionamiento seguro y confiable del mismo.

Operar el equipo siempre dentro de los límites electricos y ambientales especificados.

Se pueden producir voltajes peligrosos en los conectores, aunque los voltajes auxiliares del equipo estén desconectados.

Cada equipo debe estar conectado a tierra de forma segura.

Solo personal calificado puede llevar a cabo la instalación eléctrica del equipo.

Al abrir el gabinete quedan expuestos circuitos con voltajes peligrosos.

Siempre seguir las normas de seguridad eléctrica nacionales.

El incumplimiento de la información de seguridad puede provocar la muerte, lesiones personales o daños sustanciales a la propiedad.

Nunca abrir el circuito secundario de un CT vivo, las tensiones producidas pueden ser letales para las personas y pueden generar daños en la aislación. Cortocircuitar los secundarios del CT antes de abrir cualquier conexión.

Los circuitos de tensión nunca deben ser cortocircuitados.

Nunca manipular ni modificar las conexiones del equipo cuando el mismo se encuentra encendido.

El equipo debe tener todos los conectores enchufados incluso cuando los mismos no están siendo utilizados.

Nunca mirar dentro de los conectores de salida de fibra óptica. Utilizar instrumentos de medida de potencia óptica para determinar los niveles de señal presentes.

Siempre que se apliquen cambios en la configuración de los parámetros del equipo, tomar medidas para evitar el disparo accidental o el mal funcionamiento de los dispositivos de control y protección conectados.

No manipular liquidos cerca del equipo, incluso si el mismo está apagado.

Todas las conexiones cableadas al equipo deben tener un potencial definido. En caso de realizar cableados por previsión que no serán utilizados al momento de la puesta en marcha, los mismos deben ser aterrados.

Atención: riesgo de incendio en caso de reemplazar la batería por una de tipo incorrecto o de colocar la batería con la polaridad invertida.

Realizar el descarte de las baterías reemplazadas según las reglamentaciones nacionales y/o locales.

ÍNDICE DE CONTENIDOS

Aviso Legal	2
Precauciones de Seguridad	
Índice de Contenidos	5
Índice de Figuras	6
1 Introducción	0 Q
1.1 Acerca del manual	0 Q
1.2 Referenciae	٥
1.2. Telelelloida	9
	9
1.4. GIOSATIO	. 10
2. Presentacion dei Equipo	
2.1. Arquitectura	. 11
2.2. Funcionalidades	. 12
2.3. Caracteristicas	. 12
3. Instalación	. 14
3.1. Introducción	. 14
3.2. Montaje del gabinete	. 14
3.3. Instalación de baterías	. 15
3.4. Instalación de equipo de comunicaciones	. 16
3.5. Ubicación de acometida	. 17
3.6. Conexionado de aterramiento	. 18
3.7. Conexionado de alimentación y servicios auxiliares	. 18
3.8. Conexionado de celdas	. 20
3.9. Conexionado de entradas/salidas digitales libres	. 23
3.10. Conexionado de medidas de baja tensión	. 25
3.11. Conexionado de detección de paso de falta	. 28
3.12. Puertos de comunicaciones	. 32
3.13. Verificaciones previas a energizar el equipo	. 33
4. Sistema RTUQM	. 34
4.1. Generalidades	. 34
4.2. Módulos básicos en UIT115	. 35
4.3. Administrador RTUQM	. 35
4.4. Eventos de sistema	. 35
4.5. Acceso remoto	. 36
4.6. Misceláneo	. 37
5. Configuración RTUQM	. 39
5.1. Archivos de configuración	. 39
5.2. Configuración global	. 39
5.3. Configuración de celdas	. 40
5.4. Configuración de entradas/salidas libres	. 41
5.5. Configuración de medidas BT	. 42
5.6. Configuración de DPF	. 43
5.7. Configuración de display virtual	. 43
5.8. Configuración de automatismos	. 44
5.9. Comunicaciones SCADA	. 44
6. Operación	45
6.1. Panel de Operación Local	. 45
6.2 Display Virtual	47
7. Modelos y opciones	.51
8. Especificaciones Técnicas	. 52
81 Alimentación	52
8.2 Entradas digitales	52
8.3. Salidas digitales	.52
8.4 Entradas de medida directa	53
8.5. Medida de temperatura	. 53
8.6. Control de celdas	. 50
87 Captores corriente	54
8.8 CPU	. 54
8.9. Panel de operación	. 55

8.10. Mecánicas y ambientales	55
9. Mantenimiento	56
9.1. Sustitución de Baterías	56
9.2. Sustitución de Fusibles	57
A. Listado de Bornes y Conectores	58
A.1. Borneras Frontera	58
A.2. Conectores de Comunicaciones	59
B. Cálculo DPF	60
B.1. Introducción	60
B.2. Parámetros de configuración	60
B.3. Algoritmo de funcionamiento	61
B.4. Tabla de puntos	62
C. Cálculo ST3F	63
C.1. Introducción	63
C.2. Parámetros de configuración	63
C.3. Tabla de puntos	63
D. Módulo de Alimentación	65
D.1. Introducción	65
D.2. Arquitectura	65
D.3. Supervisión de Alimentación – Alarma de Falta AC	66
D.4. Supervisión de Baterías – Nivel crítico	66
D.5. Supervisión de Baterías – Test de Capacidad	67
D.6. Auxiliares	69

ÍNDICE DE FIGURAS

Figura 2-1 : UIT115 - Diagrama Arquitectura	. 11
Figura 3-1 : UIT115 – Vista Frontal	. 14
Figura 3-2 : Instalación de baterias	. 15
Figura 3-3 : Instalación de equipo de comunicaciones	. 16
Figura 3-4 : UIT115 – Prensaestopas - Vista Exterior	. 17
Figura 3-5 : UIT115 – Prensaestopas - Vista Interior	. 17
Figura 3-6 : Barra de Tierra G.01	. 18
Figura 3-7 : Alimentación y Servicios Auxiliares	. 19
Figura 3-8 : UIT115 – Conectores Harting a Celdas - Vista Exterior	. 20
Figura 3-9 : UIT115 – Conectores Harting a Celdas - Vista Interior	. 21
Figura 3-10 : Cables de Control para Celdas	. 22
Figura 3-11 : Tarjeta Auxiliar U04	. 23
Figura 3-12 : Borneras X.ED/X.SD en UIT115-4C	. 24
Figura 3-13 : Borneras X.MBT	. 26
Figura 3-14 : Borneras X.DPF	. 28
Figura 3-15 : Sensor de Corriente para DPF	. 29
Figura 3-16 : Cable de control para sensores de corriente	. 30
Figura 3-17 : Apertura de transformadores de corriente	. 30
Figura 3-18 : Montaje de transformadores de corriente	. 31
Figura 3-19 : Sujeción de transformadores de corriente	. 31
Figura 3-20 : Puertos de Comunicaciones	. 32
Figura 4-1 : Arquitectura Sistema RTUQM	. 34
Figura 4-2 : Terminal RTUQM	. 37
Figura 5-1 : Configuración básica RTUQM	. 39
Figura 6-1 : Panel de Operaciones de UIT115-4C/8C	. 45
Figura 6-2 : Acceso a Terminal desde Administrador RTUQM	. 47
Figura 6-3 : Display Virtual – Mímico DV-C1	. 47
Figura 6-4 : Display Virtual – Mímico DV-F1	. 48
Figura 6-5 : Display Virtual – Mímico DV-F2	. 48
Figura 6-6 : Display Virtual – Mímico DV-F3	. 48
Figura 6-7 : Display Virtual – Mímico DV-MBT	. 49
Figura 6-8 : Display Virtual – Mímicos DV-DPF	. 49

Figura 6-9 : Display Virtual – Mímico DV-EDSD	. 49
Figura 6-10 : Display Virtual – Mímico DV-COM	. 50
Figura 6-11 : Display Virtual – Mímico DV-SYS	. 50

1. INTRODUCCIÓN

1.1. Acerca del manual

Este manual contiene instrucciones para la instalación, configuración, puesta en marcha y mantenimiento del producto UIT115. Es un requisito para la correcta interpretación tener conocimientos eléctricos, de comunicaciones y de sistemas de protección, automatismo y control de subestaciones eléctricas.

El manual se encuentra dividido en capítulos.

El capítulo 1 describe la estructura del presente manual y presenta un listado de referencias a documentos complementarios, una tabla de símbolos y un glosario.

El capítulo 2 presenta un diagrama general de la arquitectura del equipo. Se describen los módulos que lo componen, sus características y sus principales funcionalidades.

El capítulo 3 brinda información necesaria para una correcta instalación del equipo. A partir de los diagramas constructivos, se reconocen los diferentes bloques que lo componen, detallando la nomenclatura utilizada para identificar partes y señales. Se hace énfasis en los conectores y bloques de borneras destinadas al conexionado de señales externas, indicando criterios de conexionado a considerar para el correcto funcionamiento del equipo así como recomendaciones sobre aterramiento, espesores de cable, etc.

El capítulo 4 presenta el software de aplicación Sistema RTUQM. Se indican los módulos utilizados en el equipo y se presenta la aplicación para configuración y monitoreo Administrador RTUQM. Se describen algunos aspectos prácticos vinculados al manejo del equipo y a los mecanismos de acceso remoto disponibles.

En el capítulo 5 se presentan los principales parámetros de configuración disponibles en la UIT115, indicando en cada caso los valores utilizados en la configuración de fábrica.

En el capítulo 6 se presentan los mecanismos disponibles para operación directa sobre el equipo: el panel de operaciones local y el display virtual.

El capítulo 7 detalla los modelos disponibles del equipo y se indica cómo generar el código apropiado para ordenar el equipo y las posibles variantes.

El capítulo 8 presenta las especificaciones técnicas del equipo.

El capítulo 9 contiene información útil para el mantenimiento del equipo.

En el Anexo A se dispone de un listado de las borneras frontera del equipo.

En el Anexo B se describe el cálculo de Detección de Paso de Falta (DPF), describiendo su algoritmo de funcionamiento, los parámetros de configuración disponibles y la tabla de puntos exportados.

En el Anexo C se describe el cálculo Sistema Trifásico de Potencia (ST3F), describiendo los parámetros de configuración disponibles y la tabla de puntos exportados.

En el Anexo D se describe la lógica que se implementa para supervisión de alimentación y ensayo periódico de baterías.

1.2. Referencias

- [1] UIT115 Funcional Eléctrico
- [2] UIT115 Diagrama Constructivo
- [3] UIT115 Tabla de Puntos Exportados
- [4] RTU115 Folleto
- [5] RTU115 Manual
- [6] Sistema RTUQM Folleto
- [7] Sistema RTUQM Manuales
- [8] Sistema RTUQM Guías de Interoperabilidad
- [9] Sistema RTUQM Certificados IEC61850 Ed1. y Ed2.

1.3. Tabla de Símbolos

A lo largo del manual y en el equipo aparecerán los siguientes símbolos:

Símbolo	Descripción
\triangle	Precaución: consulte la documentación del producto
<u>/</u> 4	Precaución: riesgo de shock eléctrico
R	Atención: seguir instrucciones para su desecho.
	Terminal de Tierra de Protección (PE).
<u> </u>	Terminal de Tierra Funcional.
	Corriente Continua
\sim	Corriente Continua y/o Alterna

1.4. Glosario

ADC BT CA CC CPU CT DPF DSD DV ED EM ETH FUT	Analog to Digital Converter. Baja Tensión Corriente Alterna. Corriente Continua. Central Processing Unit. Current Transformer. Detección de Paso de Falta Doble Sensado Discordante Display Virtual (de UIT115) Entrada Digital Elemento de Maniobra Abreviatura de Ethernet. Equipment Under Test
FIFO	First In. First Out.
FPGA	Field Programmable Gate Array.
IEC	International Electrotechnical Commission.
IED	Intelligent Electronic Device.
IEEE	Institute of Electrical and Electronics Engineers.
INT	Interruptor
1/0	Input/Output.
	Internet Protocol.
LED	Light Emitting Diode.
	Liquid Crystal Display.
	Normal Abjerto
	Notwork Time Protocol
	Puesta a Tiorra
PE	Protective Farth
PE	Power Factor
PO	Panel de Operaciones (de UIT115)
PTP	Precision Time Protocol (IEEE 1588 / IEC 61588).
RAM	Random Access Memory.
RMS	Root Mean Square.
RTC	Real Time Clock.
RTU	Remote Terminal Unit.
SD	Salida Digital
SCADA	Supervisory Control And Data Acquisition.
SFP	Small Form-Factor Pluggable.
TCP	Transmission Control Protocol.
IVS	I ransient Voltage Suppression (diode).
UIC	Coordinated Universal Time.
VI	Voltage Transformer.

2. PRESENTACIÓN DEL EQUIPO

La UIT115 es una Unidad Interfaz de Telecontrol diseñada para control a distancia de centros de transformación MT/BT (Media Tensión/Baja Tensión) y puestos de conexión en MT. Su arquitectura está basada en una RTU marca Controles de la familia RTU115.

El modelo UIT115-4C está dimensionado para permitir supervisar y controlar hasta 4 celdas, en tanto que el modelo UIT115-8C permite supervisar y controlar hasta 8 celdas.

2.1. Arquitectura

El equipo ofrecido está compuesto por cuatro grandes módulos:

- UIT115-MP Módulo Principal
- UIT115-FUE Módulo de Alimentación
- UIT115-PO Panel de Operación
- UIT115-IO Módulo de Entrada/Salida Digital

El siguiente esquema resume la arquitectura interna:

Figura 2-1 : UIT115 - Diagrama Arquitectura

El esquema no incluye señales que la UIT115 utiliza internamente para supervisión y autodiagnóstico.

El equipo de comunicaciones no está incluido, pero está previsto el espacio físico para su montaje así como el conexionado para su alimentación.

2.2. Funcionalidades

Las principales funcionalidades de la UIT115 son:

- Control, operando como Unidad Terminal Remota (RTU): relevar, medir, fechar y procesar señales de telecontrol provenientes de los equipos de potencia, ejecutar mandos sobre dicho equipamiento y comunicar señales y mandos hacia un centro de control o un dispositivo de jerarquía superior, a través de diferentes protocolos de comunicaciones.
- Realizar medidas en Baja Tensión (BT) de sistemas trifásicos de potencia, determinando y reportando todas las magnitudes relevantes del mismo.
- Implementar un algoritmo para Detección de Paso de Falta (DPF) en cables de media tensión.
- Proporcionar alimentación segura para el accionamiento de los elementos de maniobra (EM) así como para los dispositivos de control y comunicaciones.
- Presentar estados y alarmas relevantes en una consola de operación local, permitiendo ejecutar mandos sobre los elementos de maniobra (EM) y gestionando la unicidad de mando, según la selección de modo de mando local/remoto a realizarse en la propia consola.
- Ofrecer una consola virtual remota con mímicos configurables, capaz de presentar estados y medidas relevantes, así como unifilares, diagramas de fasores, etc.
- Relevar información desde dispositivos electrónicos inteligentes (IED) esclavos mediante diversos protocolos de comunicaciones.
- Ejecutar lógicas programadas por el usuario.
- Sincronizar la base de tiempo con niveles superiores.
- Almacenar información durante períodos de fallo de comunicaciones.
- Verificar su funcionamiento interno reportando fallas a niveles superiores.
- Permitir gestión y monitoreo remoto, para configuración y mantenimiento.

2.3. Características

Alimentación

- Entrada de alimentación para 220Vca
- Incluye sistema de fuente/cargador con 4 baterías de 12V, 12Ah.

Entrada/Salida Digital

	4C-xD-xP					8C -x	D-xP	
	Celdas	Libres	Interno	Total	Celdas	Libres	Interno	Total
Entradas Digitales	24	8	16	48	48	16	16	80
Salidas Digitales	8	2	6	16	16	4	4	24

Entradas Medida Directa

		xC-xD- 1P			xC-xD- 2P			
	BT	DPF	Interno	Total	BT	DPF	Interno	Total
Corrientes 5Aca	4	8	0	12	8	8	2	18
Tensiones 380Vca	3	1	2	6	6	1	5	12
Tensiones 220Vca	0	0	1	1	0	0	1	1
Tensiones 48Vcc	0	0	3	3	0	0	3	3

Puertos de Comunicaciones

	4C-xD-1P			4C -xD	-2P / 8C-2	xD- XP
	Libres	Interno	Total	Libres	Interno	Total
Ethernet SFP	1	0	1	1	0	1
Seriales RS232	3	2	5	2	3	5
Seriales RS485	1	0	1	1	0	1

Panel de Señalización y Operación Local

- Llave de selección de modo de mando (Local/Remoto)
- Señalización por LED de:
 - estado de los EM (interruptor y puesta a tierra)
 - estado de los DPF (activo y falta)
 - estado de ED de reserva
 - o estado de ED libres
 - o estado de SD libres
 - estado de alimentación, comunicaciones y alarmas
 - Mando mediante pulsadores para:
 - o apertura/cierre de interruptores
 - o restablecimiento/prueba de DPF
 - o accionamiento de SD libres

Display Virtual

- Mímicos predefinidos para supervisión y control remoto de
 - o Čeldas
 - Detectores de Paso de Falta
 - o Medidas Baja Tensión
 - o Módulo de Álimentación
 - o Entradas y Salidas digitales libres
 - Alarmas y señales internas de autodiagnóstico
 - o Estado de comunicaciones
- Mímicos configurables por el usuario

<u>Software</u>

- Sistema Operativo de tiempo real.
- Software de aplicación Sistema RTUQM.

<u>Físicas</u>

- Gabinete metálico para montaje en pared.
- Dimensiones exteriores: 980mmx720mmx300mm.
- Acceso mediante doble puerta frontal.
- Válvulas de control de presión.
- Todos los componentes son fácilmente accesibles desde el frente.
- No requiere retirar ninguna componente del interior del gabinete para el montaje.
- Espacio previsto para equipamiento de comunicaciones.
- Conectores tipo Harting 10A polarizados para conexionado a celdas. Se incluyen cables.
- Prensa-estopas para acometida: comunicaciones, alimentación, medidas y entrada/salida libre.
- Servicios auxiliares: tomacorrientes, luminaria, termostato, calefactor.
- Barra de Tierra.

3. INSTALACIÓN

En este capítulo se describen aspectos necesarios para una correcta instalación del equipo. Se presenta la disposición interna, la interfaz de operación y se indican criterios básicos de conexionado.

En el interior del gabinete pueden estar accesibles circuitos con voltajes peligrosos. Verificar que el equipo este des-energizado previamente a realizar cualquier tipo de trabajo de conexionado sobre el mismo.

Tome precauciones adecuadas contra descargas electrostáticas (ESD) antes de acercarse al interior del equipo, para evitar daños sobre el mismo.

3.1. Introducción

El equipo se entrega embalado sobre un pallet Mercosur. Las dimensiones exteriores del embalaje son $1.0m \times 1.2m \times 0.90m$.

Cada unidad de embalaje contiene:

Componente	Descripción Modelo UIT1				
		4C-1D	4C-2D	8C-1D	8C-2D
Gabinete	Gabinete completamente cableado	1	1	1	1
Kit de Baterías	Conjunto de 4 baterías de 12V 12Ah	1	1	1	1
Kit de Celdas	Conjunto de 4 cables para conexionado de celdas	1	1	2	2
Kit de DPF	Conjunto de 3 captores y 1 cable de conexionado	1	2	1	2

3.2. Montaje del gabinete

El gabinete de la UIT115 está diseñado para montaje en pared.

Figura 3-1 : UIT115 – Vistas exteriores

Para el montaje, el gabinete cuenta con dos orejas en la parte trasera superior, como se muestra en la imagen. El gabinete debe estar cerrado al momento de efectuar el montaje, no siendo necesario desmontar ninguna componente del interior del gabinete.

Las dimensiones exteriores son:

- Ancho: 980mm
- Alto: 720mm
- Profundidad: 300mm

Los pesos aproximados son:

- Gabinete cableado, sin baterías: 65kg
- Gabinete cableado, con baterías: 80kg
- Juego de 4 cables para celdas: 20kg
- Juego de 3 captores de corrientes con su cable: 10kg

Cuenta con doble puerta frontal, contando cada una de las puertas con doble cerradura.

Dentro del gabinete se entrega un kit de montaje, compuesto por 2 tacos Fischer N° 12, 2 tirafondos de cabeza hexagonal y 2 arandelas.

En caso de que la pared sobre la que se desea montar el gabinete no se encuentre en buenas condiciones, puede ser necesario utilizar otro mecanismo de montaje.

3.3. Instalación de baterías

El equipo utiliza un kit de 4 baterías de 12V 12Ah conectadas en serie. Las baterías están incluidas en el suministro, pero se entregan desconectadas y deben ser instaladas dentro del gabinete durante la puesta en marcha.

La ubicación prevista para las baterías es en la parte inferior del gabinete, apoyadas sobre una bandeja auxiliar. La posición de las baterías y su conexionado eléctrico se detalla en el esquema que se presenta a continuación.

Figura 3-2 : Instalación de baterias

La llave termo-magnética Q02 permite conectar/desconectar las baterías. Debe estar apagada cuando se instalan o se reemplazan las baterías, permitiendo así trabajar de forma segura.

Los soportes de fijación incluidos en el gabinete cumplen la función de inmovilizar las baterías. Los cables para el conexionado se encuentran dentro del gabinete, sujetos mediante un suncho a uno de los soportes de fijación.

Antes de instalar o reemplazar las baterías, verificar que la llave Q02 esté apagada.

<u>/</u>

Para el conexionado de las baterías deben utilizarse los cables provistos con el equipo, que cuentan con las terminales de conexión tipo faston apropiadas.

Atención: riesgo de incendio en caso de reemplazar la batería por una de tipo incorrecto o de colocar la batería con la polaridad invertida.

Realizar el descarte de las baterías reemplazadas según las reglamentaciones nacionales y/o locales.

3.4. Instalación de equipo de comunicaciones

El gabinete cuenta con un espacio libre con el objetivo de permitir el montaje de un equipo de comunicaciones, si bien éste no forma parte del suministro. El espacio está ubicado en la parte superior del lateral izquierdo del gabinete, disponiéndose de una bandeja de 250mm x 200mm libre para esta finalidad.

Figura 3-3 : Instalación de equipo de comunicaciones

Para un correcto y seguro montaje, se recomienda retirar la bandeja y mecanizarla lejos del gabinete, evitando así el uso de herramientas en el interior del gabinete que puedan provocar un daño en alguna componente o introducir desperdicios, como ser viruta metálica.

En la parte inferior del mismo lateral izquierdo del gabinete, está accesible la bornera X.CC12, cuya finalidad es ofrecer la alimentación para el equipo de comunicaciones.

El equipo de comunicaciones deberá conectarse mediante un cable tipo patch cord Ethernet a la unidad de control de la UIT115 (U01), al puerto ETH0.

No realizar ningún trabajo de mecanización en el interior del gabinete.

3.5. Ubicación de acometida

La acometida para el conexionado de alimentación y todas las señales, exceptuando la interconexión con las celdas, se realiza a través de una serie de prensaestopas (PG) ubicados en el piso del gabinete. A continuación se muestra la ubicación de los prensaestopas.

Figura 3-4 : UIT115 - Prensaestopas - Vista Exterior

Figura 3-5 : UIT115 - Prensaestopas - Vista Interior

Los PG se encuentran identificados para simplificar la tarea del instalador. La siguiente tabla presenta un detalle los PG disponibles y el uso previsto por defecto:

ID	Tipo	Uso previsto	Destino
M20.1	M20	Alimentación / Tomacorrientes	X.CA / X.TC
M20.2	M20	Puesta a Tierra	G.01
M20.3	M20	Comunicaciones	
M25.1	M25	Entradas Digitales Libres	X.ED
M25.2	M25	Entradas Digitales Libres	X.ED
M25.3	M25	Salidas Digitales Libres	X.SD
M25.4	M25	Reserva	
M25.5	M25	Comunicaciones	
M32.1	M32	Medidas BT	X.MBT
M32.2	M32	Detector Paso Falta 1	X.DPF
M32.3	M32	Detector Paso Falta 2	X.DPF
M32.4	M32	Reserva	
M32.5	M32	Comunicaciones	

Cada PG cuenta con un tapón, que deberá ser retirado para permitir la acometida de los cables.

Antes de realizar ninguna conexión, verificar que las llaves termomagnéticas Q01, Q02 y Q03 estén apagadas.

Mantener instalados los tapones en aquellos PG que no vayan a ser utilizados para la acometida de señales.

3.6. Conexionado de aterramiento

Previo a realizar ningún otro tipo de conexión, debe aterrarse el gabinete. Esta conexión se debe efectuar de forma directa a la barra de tierra G.01, que se encuentra ubicada en la parte inferior de la bandeja lateral derecha.

Figura 3-6 : Barra de Tierra G.01

La puesta a tierra es un requisito fundamental de seguridad. Debe ser la primera conexión a realizar en la instalación del equipo y la última a retirar al desinstalarlo.

El cableado de alimentación debe realizarse mediante cable de 6 mm² o superior, utilizando terminales de compresión de aro.

Cada parte metálica que compone el gabinete (chassis, puerta y bandejas) se encuentran debidamente conectada a la barra de tierra G.01.

Todo dispositivo electrónico incluido dentro del gabinete y que requiera aterramiento, se encuentra debidamente conectado a la barra de tierra G.01.

3.7. Conexionado de alimentación y servicios auxiliares

La entrada de alimentación del equipo debe cablearse a la bornera X.CA ubicada en la bandeja lateral derecha del gabinete. Se encuentra protegida por una llave termo-magnética (Q01), ubicada en la parte superior de la bandeja del fondo del gabinete.

La llave Q01 cuenta con un contacto auxiliar, internamente cableado a una señal de entrada para su supervisión. De esta forma, el equipo es capaz reportar en su tabla de puntos exportados la posición de la llave.

Figura 3-7 : Alimentación y Servicios Auxiliares

La alimentación para los servicios auxiliares es independiente de la entrada de alimentación del equipo y debe cablearse a la bornera X.SA, ubicada en la bandeja lateral derecha del gabinete. Se encuentra protegida por una llave termo-magnética (Q03), ubicada junto al tomacorriente en la bandeja del fondo del gabinete.

Esta llave alimenta:

X.ICC

- un tomacorriente tipo Schuko (E01), ubicado en la bandeja del fondo del gabinete
- una luminaria LED (H), ubicada en la bandeja superior
- un calefactor (RL), ubicado en la puerta y controlado por un termostato (TS)

La bornera auxiliar X.ISA facilita la distribución interna de la tensión de servicios auxiliares.

Observación: en versiones anteriores del producto, la acometida de servicios se denominaba X.TC y solamente contaba con el tomacorriente E01.

Antes de conectar la alimentación del equipo en X.CA, verificar que la llave Q01 esté apagada.

Antes de conectar la alimentación del tomacorrientes en X.SA, verificar que la llave

 \wedge

El cableado de la entrada de alimentación debe realizarse mediante cable de entre $1.5 \text{ mm}^2 \text{ y} 2.5 \text{mm}^2$, utilizando terminales de compresión tubulares aisladas.

El cableado de la entrada para el tomacorriente debe realizarse mediante cable de entre 1.5 mm² y 2.5mm², utilizando terminales de compresión tubulares aisladas.

Utilizar siempre la herramienta tipo prensa para colocación de terminales apropiada según el tipo de terminal y espesor de cable.

Verificar el rango de entrada de alimentación antes de conectar.

3.8. Conexionado de celdas

Q03 esté apagada.

El conexionado de las señales para el control de las celdas es mediante conectores industriales tipo Harting ubicados en el piso del gabinete. A continuación se muestra la ubicación de dichos conectores en el caso de la UIT115-8C. La UIT115-4C omite los conectores C05 a C08.

Figura 3-8 : UIT115 – Conectores Harting a Celdas - Vista Exterior

Figura 3-9 : UIT115 – Conectores Harting a Celdas - Vista Interior

El equipo se suministra con un cable de control de 10 conductores para cada celda. El pinout de los conectores es el siguiente:

Pinout de conectores de celdas					
Pin	Señal				
1	Negativo 48Vcc				
2	Mando cierre Interruptor				
3	Mando apertura Interruptor				
4	Estado Interruptor Abierto				
5	Estado Interruptor Cerrado				
6	Positivo 48Vcc				
7	Estado Seccionador Puesta a Tierra cerrado				
8	Estado Seccionador Puesta a Tierra abierto				
9	Estado Reserva 1				
10	Estado Reserva 2				

Conectores Harting y cables

Se utilizan conectores industriales y extraíbles, de tipo Harting 10A de 10 conexiones. Los conectores cuentan con un seguro mecánico que garantiza que la ficha no se desprenda como consecuencia de esfuerzos en el cable. Los cables se encuentran identificados en ambos extremos. Se utilizan además codificadores que garantizan que sólo sea posible enchufar un cable en el conector de la celda correspondiente. A continuación se detalla el criterio utilizado para la codificación de los conectores de los cables, donde M=Male y F=Female son los codificadores.

Identificación del cable	Posición Identificador en conector del cable	Conector correspondiente en gabinete UIT115-4C	Conector correspondiente en gabinete UIT115-8C
1		C01	C01
2		C02	C02
3		C03	C03

4	C04	C04
5		C05
6		C06
7		C07
8		C08

Los conectores en los gabinetes de la UIT están codificados de forma inversa que los de los cables.

El cable para conexionado de la celda es de 10 conductores de 1.5mm² y tiene por defecto 12m de longitud. En el extremo del lado de la UIT, lleva los conectores Harting ya mencionados, en tanto que en el extremo de la celda tiene terminales de compresión tubulares aislados. Los conductores se encuentran identificados del 1 al 10.

Figura 3-10 : Cables de Control para Celdas

Polarización de mandos

Es posible seleccionar la tensión con la que se mojan los contactos de los mandos que son enviados hacia la celda. La forma de realizar esta selección es mediante el selector J3, ubicado en la tarjeta auxiliar UIT115-IO, identificada como U04.

Figura 3-11 : Tarjeta Auxiliar U04

Las opciones de polarización son:

Pin	Polarización
1-2	Positivo 48Vcc
2-3	Negativo 48Vcc

La tensión de polarización seleccionada es sensada internamente por el equipo y está disponible en la tabla de puntos exportados.

La UIT115-8C dispone de dos tarjetas auxiliares: U04 y U12. La tarjeta U04 corresponde al grupo de celdas C01 a C04, en tanto que la tarjeta U12 corresponde al grupo de celdas C05 a C08. La polarización de cada grupo de celdas es independiente.

Fusible protección

El equipo cuenta con un fusible para proteger la tensión de mando. Se trata de un fusible de vidrio de 30mm, ubicado en la tarjeta auxiliar e identificado como F1. El valor por defecto del fusible es de 5A, pero puede ser reemplazado por un valor acorde a la corriente máxima requerida para operar sobre los elementos de maniobra de la estación.

El estado del fusible de protección es monitoreado internamente por el equipo y está disponible en la tabla de puntos exportados.

La UIT115-8C dispone de dos tarjetas auxiliares: U04 y U12. La tarjeta U04 corresponde al grupo de celdas C01 a C04, en tanto que la tarjeta U12 corresponde al grupo de celdas C05 a C08. Cada grupo de celdas tiene un fusible F1 de protección independiente.

3.9. Conexionado de entradas/salidas digitales libres

La acometida para las entradas digitales libres es en la bornera X.ED, en tanto que la de las salidas digitales libres es en la bornera X.SD. Ambas borneras están ubicada en la bandeja lateral derecha del gabinete de la UIT.

Figura 3-12 : Borneras X.ED/X.SD en UIT115-4C

En la figura se muestra el detalle para una UIT115-4C, que cuenta con 2 SD libres y 8 ED libres. En el caso de la UIT115-8C, las SD libres son 4 y las ED libres son 16.

Los bornes son de doble piso tipo Push-In, marca Phoenix Contact, modelo PTTB 2,5, admitiendo cables de 0.14mm² a 4mm² sin terminal de compresión y de 0.14mm² a 2.5mm² con terminal de compresión.

Entradas Digitales Libres

El conexionado de las Entradas Digitales Libres es el siguiente

Bornera X.ED			
Id Borne	Función		
01	Entrada Libre 01 – Señal		
01+	Positivo 48Vcc		
02	Entrada Libre 02 – Señal		
02+	Positivo 48Vcc		
03	Entrada Libre 03 – Señal		
03+	Positivo 48Vcc		
04	Entrada Libre 04 – Señal		
04+	Positivo 48Vcc		
05	Entrada Libre 05 – Señal		
05+	Positivo 48Vcc		
06	Entrada Libre 06 – Señal		
06+	Positivo 48Vcc		
07	Entrada Libre 07 – Señal		
07+	Positivo 48Vcc		
08	Entrada Libre 08 – Señal		
-80	Positivo 48Vcc		

En el caso de la UIT115-8C, la tabla se extiende de forma análoga hasta la ED 16.

El cableado de las entradas digitales debe realizarse mediante cable de entre 1.5 mm² y 2.5mm², utilizando terminales de compresión tubulares aisladas.

Utilizar siempre la herramienta tipo prensa para colocación de terminales apropiada según el tipo de terminal y espesor de cable.

 \triangle

Las entradas digitales libres comparten el común.

Verificar las especificaciones técnicas de las entradas digitales antes de conectar.

Salidas Digitales Libres

El conexionado de las Salidas Digitales Libres es el siguiente

Bornera X.SD			
Id Borne Función			
01A Salida Libre 01 – NA			
01B Salida Libre 01 – C			
02A Salida Libre 02 – NA			
02B	Salida Libre 02 – C		

En el caso de la UIT115-8C, la tabla se extiende de forma análoga hasta la SD 04.

El cableado de las salidas digitales debe realizarse mediante cable de entre 1.5 mm² y 2.5mm², utilizando terminales de compresión tubulares aisladas.

Utilizar siempre la herramienta tipo prensa para colocación de terminales apropiada según el tipo de terminal y espesor de cable.

Verificar las especificaciones técnicas de las salidas digitales antes de conectar.

3.10. Conexionado de medidas de baja tensión

La acometida para las señales de entrada de medida directa en baja tensión es en la bornera X.MBT, ubicada en el la bandeja lateral derecha del gabinete de la UIT.

Figura 3-13 : Borneras X.MBT

Los bornes son tipo Push-In, marca Phoenix Contact, modelo PTME 6, admitiendo cables de 0.5mm² a 10mm² sin terminal de compresión y de 0.5mm² a 6mm² con terminal de compresión.

El conexionado de las señales de corriente y tensión es el siguiente:

Bornera X.MBT			
Id Borne	Función		
01	Tensión Fase A		
02	Tensión Fase B		
03	Tensión Fase C		
04	Tensión Neutro		
05	Corriente Fase A – ingreso		
06	Corriente Fase B – ingreso		
07	Corriente Fase C – ingreso		
08	Corriente Fase A – retorno		
09	Corriente Fase B – retorno		
10	Corriente Fase C – retorno		

Los bornes 01 a 04, correspondientes a las entradas de tensión, son seccionables y cuentan con punto de prueba.

Los bornes 05 a 10, correspondientes a las entradas de corriente, son seccionables, cuentan con punto de prueba y puentes de cortocircuito. Los retornos tienen un puente fijo de tres posiciones, en tanto que los ingresos tienen uno móvil de 4 posiciones, que permite cortocircutar las tres fases de forma simultánea.

Los modelos xC-xD-**2P** cuentan con dos módulos de medida en BT. En dichos modelos, la bornera X.MBT cuenta con 20 bornes, donde los bornes 11 a 14 corresponden a las entradas de tensión del segundo módulo de medidas y los bornes 15 a 20 a las de corriente.

Para obtener medidas correctas es fundamental respetar el sentido de las corrientes y configurar de forma apropiada relaciones de transformación, unidades, amplitudes nominales y secuencia de fases.

Verificar las especificaciones técnicas de las entradas de corriente y tensión antes de conectar.

Los circuitos de corriente nunca deben ser abiertos.

El cableado de las corrientes debe realizarse con cable de entre 1.5 mm² y 4mm² de sección, utilizando terminales de compresión tubulares aisladas.

Cortocircuitar y seccionar las corrientes tanto para conectar el equipo como para desconectarlo.

Los circuitos de tensión nunca deben ser cortocircuitados.

El cableado de las tensiones debe realizarse con cable de entre 1.5mm² y 4mm² de sección. Deben utilizando terminales de compresión tubulares aisladas.

Seccionar las tensiones tanto para conectar el equipo como para desconectarlo.

Utilizar siempre la herramienta tipo prensa para colocación de terminales apropiada según el tipo de terminal y espesor de cable.

3.11. Conexionado de detección de paso de falta

La acometida para las señales de entrada para la detección de paso de falta es la bornera X.MBT, ubicada en el la bandeja lateral derecha del gabinete de la UIT.

Figura 3-14 : Borneras X.DPF

Los bornes son tipo Push-In, marca Phoenix Contact, modelo PTME 6, admitiendo cables de 0.5mm² a 10mm² sin terminal de compresión y de 0.5mm² a 6mm² con terminal de compresión.

El conexionado de las señales de corriente y tensión es el siguiente:

Bornera X.DPF			
Id Borne	Función		
01	DPF 1 – Corriente Fase A – ingreso		
02	DPF 1 – Corriente Fase B – ingreso		
03	DPF 1 – Corriente Fase C – ingreso		
04	DPF 1 – Corriente Fase A – retorno		
05	DPF 1 – Corriente Fase B – retorno		
06	DPF 1 – Corriente Fase C – retorno		
07	DPF 2 – Corriente Fase A – ingreso		
08	DPF 2 – Corriente Fase B – ingreso		
09	DPF 2 – Corriente Fase C – ingreso		
10	DPF 2 – Corriente Fase A – retorno		
11	DPF 2 – Corriente Fase B – retorno		
12	DPF 2 – Corriente Fase C – retorno		
13	DPF 1 / DPF 2 – Tensión L		
14	DPF 1 / DPF 2 – Tensión N		

Los bornes 13 y 14, correspondientes a las entradas de tensión, son seccionables y cuentan con punto de prueba.

Los bornes 01 a 12, correspondientes a las entradas de corriente, son seccionables, cuentan con punto de prueba y puentes de cortocircuito. Los retornos tienen un puente fijo de tres posiciones, en tanto que los ingresos tienen uno móvil de 4 posiciones, que permite cortocircutar las tres fases de forma simultánea.

Para obtener medidas correctas es fundamental respetar el sentido de las corrientes y configurar de forma apropiada relaciones de transformación, unidades y amplitudes nominales.

Sensores de Corriente

Por cada DPF, se suministra un juego de 3 sensores de corriente de tipo transformador de núcleo partido y el cable para su conexionado entre la celda y el gabinete de la UIT.

Figura 3-15 : Sensor de Corriente para DPF

Como se puede apreciar en la imagen, el conexionado del secundario de cada sensor del juego es mediante un cable de control, terminado con un conector polarizado. El color de los conectores será diferente en cada sensor, como forma de establecer un criterio para el conexionado de cada fase.

El cable para conexionado hacia la UIT es de 6 conductores y 12m de longitud. En el extremo del lado de la UIT, a ser conectado en la bornera X.PDF, tiene terminales de compresión tubular aislados y los conductores identificados del 1 al 6, mientras que en el extremo del lado de los sensores de corriente está terminado con receptáculos para los conectores polarizados de los sensores.

Figura 3-16 : Cable de control para sensores de corriente

La siguiente tabla resume el conexionado de los sensores, indicando los bornes en los que conectar del lado de la UIT tanto para el DPF1 como para el DPF2:

	Conexionado Sensores de Corriente DPF					
Fase	Color Conductor	Color Conector	Sentido	N° Conductor	Borne UIT	Borne UIT
	Cable Sensor	Polarizado	Corriente	Cable 12m	DPF1	DPF2
Α	Rojo	Rojo	Hacia UIT	1	X.DPF.01	X.DPF.07
Α	Negro	Rojo	Retorno UIT	4	X.DPF.04	X.DPF.10
В	Rojo	Blanco	Hacia UIT	2	X.DPF.02	X.DPF.08
В	Negro	Blanco	Retorno UIT	5	X.DPF.05	X.DPF.11
С	Rojo	Azul	Hacia UIT	3	X.DPF.03	X.DPF.09
С	Negro	Azul	Retorno UIT	6	X.DPF.06	X.DPF.12

Los transformadores de corriente, que son de núcleo partido, incluyen los accesorios necesarios para su montaje sobre el cable de Media Tensión (MT).

Figura 3-17 : Apertura de transformadores de corriente

Para abrir el transformador de núcleo partido así como para realizar el montaje del mismo sobre el conductor de corriente, se requiere de una llave Allen 3/16".

Es fundamental respetar el sentido de la corriente, indicado mediante una flecha en el lateral del transformador.

Figura 3-18 : Montaje de transformadores de corriente

Figura 3-19 : Sujeción de transformadores de corriente

Solo personal debidamente calificado puede llevar a cabo la instalación los sensores de corriente sobre los cables de Media Tensión.

3.12. Puertos de comunicaciones

Puertos Ethernet

El equipo dispone de 1 puerto Ethernet de 100Mbit: ETH0. El puerto está accesible directamente en el dispositivo U01 y por defecto se entrega con un SFP de cobre, con conector RJ45 (100BASE-TX).

Puertos Seriales

El equipo dispone de 1 puerto serial libre de tipo RS485: COM02. El puerto está accesible directamente en el dispositivo U01 y cuenta con las señales DA, DB y GND.

Dispone también de puertos seriales libres de tipo RS232. La cantidad depende del modelo de UIT115:

- 4C-1D-1P y 4C-2D-1P tienen 3 puertos RS232 libres (COM01, COM11 y COM12)
- 4C-1D-2P, 8C-2D-1P y 8C-2D-2P tiene 2 puertos (COM01 y COM11).

En ambos casos, los puertos están accesibles directamente en el dispositivo U01 y cuentan con las señales RXD, TXD, CTS, RTS y GND.

Figura 3-20 : Puertos de Comunicaciones

El cableado de las comunicaciones RS232/RS485 debe realizarse con cable multifilar blindado, utilizando terminales de compresión tubulares aisladas.

No retirar del equipo los conectores de aquellos puertos que no vayan a ser utilizados en la aplicación.

3.13. Verificaciones previas a energizar el equipo

Compruebe el rango nominal de la tensión de alimentación, verificando que sea apropiado para la aplicación.

Compruebe el rango nominal de las entradas analógicas de tensión, verificando que sea apropiado para la aplicación.

Compruebe el rango nominal de las entradas analógicas de corriente, verificando que sea apropiado para la aplicación.

Verifique la integridad de la puesta a tierra del equipo.

Todas las conexiones cableadas al equipo deben tener un potencial definido. En caso de realizar cableados por previsión que no serán utilizados al momento de la puesta en marcha, los mismos deben ser aterrados.

El equipo debe tener todos los conectores enchufados incluso cuando los mismos no están siendo utilizados.

4. SISTEMA RTUQM

4.1. Generalidades

El Sistema RTUQM es un conjunto de aplicaciones de software para gestión de Unidades Remotas de Telecontrol (RTU) marca Controles. Es utilizado para sus familias RTU587, RTU194 y RTU115, así como para concentradores y gateways de comunicaciones, como ser CPUG y CPURTUV3.

Características básicas:

- Utiliza un sistema operativo de tiempo real.
- Tiene una estructura modular y flexible.
- Elevada confiabilidad.
- Amplia capacidad de comunicaciones y sincronismo.
- Posibilidad de agregar lógicas programadas por el usuario.
- Administración sencilla.

La figura muestra la arquitectura del Sistema RTUQM. Por más detalles sobre el mismo, consultar la documentación del producto en [6] y [7].

Figura 4-1 : Arquitectura Sistema RTUQM

4.2. Módulos básicos en UIT115

La UIT115 utiliza para su funcionamiento básico los siguientes módulos:

- Módulo Consola (consola).
- Módulo Base de Datos (bd).
- Módulo Driver Genérico Controles (drvgenc)
- Módulo Display IED (displayied).
- Módulo Driver RTU115 (drvrtu115).
- Módulo Lógicas (lógicas)

El Módulo Consola es el módulo central de la aplicación RTUQM. Se encarga de ejecutar y supervisar el funcionamiento de los otros módulos así como de interactuar con el módulo de administración.

El Módulo Base de Datos mantiene en memoria todos los puntos mapeados por drivers y protocolos.

El Módulo Driver Genérico Controles driver de adquisición que se utiliza para la comunicación con el panel frontal de operaciones del equipo, UIT115-PO.

El Módulo Display IED permite disponer de una interfaz gráfica auxiliar con mímicos configurables para monitoreo, independiente a la comunicación con el SCADA.

El Módulo Driver RTU115 es un driver de adquisición para la comunicación con los módulos de entrada/salida de las RTU115 que componen el módulo de procesamiento UIT115-MP. Se ejecutan 2 instancias de este módulo, una para la Unidad de Control y otro para la Unidad de Expansión.

El Módulo Lógicas implementa los automatismos de control del módulo de alimentación UIT115-FUE.

A esta configuración se agregan los módulos específicos requeridos por la aplicación particular:

- Módulos de comunicación esclavos (servidor): IEC 61850 Ed1 y Ed2, IEC 60870-5-101/104, DNP3, Modbus.
- Módulos de comunicación maestros (clientes): IEC 61850 Ed1 y Ed2, IEC 60870-5-101/104, DNP3, Modbus.
- Módulos de sincronización: IRIG-B, IEEE-1588 (PTPv2), NTP.
- Módulo de lógicas programadas por el usuario y módulo de presentación de lógicas.
- Otros módulos bajo requerimiento.

4.3. Administrador RTUQM

El Administrador RTUQM es el software que permite configurar y administrar unidades remotas de telecontrol con aplicativo Sistema RTUQM. Requiere un PC con Windows y conexión TCP/IP al equipo que se desea administrar.

Es importante destacar que el Administrador RTUQM tiene un control de acceso en cuatro niveles:

- Administración: permite el control total.
- Operación: no permite cambiar configuración ni actualizar módulos.
- Visualización: no permite actuar sobre la RTU (no comanda, reinicia, etc)
- Operación Lógicas: permite configurar automatismos sin modificar otros módulos.

Para una descripción más detallada de este software dirigirse al manual del mismo [7] .

4.4. Eventos de sistema

El equipo tiene un mecanismo de procesamiento de eventos de sistema que permite que cualquier módulo reporte sucesos significativos para su posterior análisis. Esto es posible en tres modalidades:

- Lista de Eventos.
- Logs de Eventos.
- Traps de Eventos.

Los eventos de sistema facilitan la detección de errores de configuración, incompatibilidades entre módulos, etc. Son clasificados según su tipo en las siguientes categorías:

- Generales.
- Error.
- Comando de punto.
- Cambio de estado de punto.
- Shutdown de RTU.
- Conectividad de módulos (arranques, terminación, reinicio, conexión, desconexión).
- Transferencia de archivos.
- Ciberactivos.

La configuración de los parámetros de funcionamiento se realiza en todos los casos desde el archivo de configuración global del equipo.

Lista de Eventos:

La Lista de Eventos es una cola de eventos de sistema en la que cada módulo del Sistema RTUQM escribe entradas frente a un suceso significativo. Es de tipo FIFO, de tamaño configurable y está ubicada en memoria RAM, por lo que se reinicia junto con el equipo. Se visualiza desde el Administrador RTUQM, admitiéndose filtros por tipo de evento o por tipo de módulo.

Logs de Eventos:

En posible almacenar eventos de sistema en memoria no volátil. Debe indicarse el tipo de eventos se desea almacenar y por cuantos días se desea mantenerlos. Se genera un archivo de log por día y quedan en el sistema de archivos bajo la ruta /rtuqm/logs, en la memoria micro-sd del módulo CPU.

Las memorias micro-sd tienen limitaciones físicas de cantidad de escrituras . En consecuencia, no debe utilizarse el equipo como un registrador.

Traps de Eventos:

Los eventos de sistema pueden ser enviados como traps SNMP. Es posible configurar a quién enviar los traps (pueden ser de broadcast) y que tipo de eventos enviar.

Se dispone de un software Logqer RTUQM que permite levantar los traps SNMP de uno o más equipos, guardando a disco en formato de archivo de texto. Este software se distribuye junto al Administrador RTUQM. Tiene la capacidad de funcionar en modo de servicio.

4.5. Acceso remoto

El equipo admite que se acceda en forma remota por los siguientes mecanismos:

- Administrador RTUQM.
- Terminal RTUQM.
- Telnet.
- FTP.
- Samba.

El Administrador RTUQM ya fue descrito en secciones anteriores.

Interfaz de operación - Terminal RTUQM

Terminal RTUQM es un software que permite visualizar mímicos configurables de forma, navegando entre ellos y eventualmente, operar.

Figura 4-2 : Terminal RTUQM

El acceso mediante Terminal RTUQM se habilita desde la configuración del Módulo Display IED (displayied) del Sistema RTUQM, mediante el parámetro *Permite conexiones de display remoto* (RemoteConsoleEnabled). En caso de habilitarse, es posible configurar si se permite o no comandar desde el display remoto, mediante el parámetro *Permite comando desde display remoto*.

El Terminal RTUQM es un software que se distribuye junto con el Administrador RTUQM.

Terminal de comandos - Telnet

Mediante un software cliente Telnet es posible acceder en forma remota a la línea de comandos del sistema operativo. El puerto que atiende el servicio Telnet es el 23. Es necesario autenticarse al sistema operativo con un usuario válido. El equipo sale de fábrica con usuario *root* y contraseña *root*.

El acceso por Telnet se habilita (o no) a nivel de la configuración global de la RTU.

Transferencia de archivos - FTP

Mediante un software cliente TFP es posible transferir archivos en forma remota desde y hacia la RTU. El puerto que atiende el servicio es el 21. Será necesario autenticarse con un usuario válido del sistema operativo El equipo sale de fábrica con usuario *root* y contraseña *root*.

El acceso por FTP se encuentra siempre habilitado.

Sistema de archivos - Samba

Samba es un software que permite compartir el sistema de archivos de un equipo con un sistema operativo que no sea Windows en una red de computadoras Microsoft. Para acceder desde un PC Windows debe colocarse en la barra de direcciones lo siguiente:

\\<dirección IP>

Será necesario autenticarse con un usuario válido de Samba. El equipo sale de fábrica con usuario de samba *root* y contraseña *root*.

El acceso por Samba se habilita (o no) en la configuración global de la RTU.

4.6. Misceláneo

Script de inicialización de usuario

Durante el proceso de inicialización del equipo, son invocados una serie de scripts que configuran el hardware, inician procesos básicos del sistema operativo y arrancan el Sistema RTUQM. Es posible que un usuario avanzado desee agregar alguna acción para que sea ejecutada cada vez que inicia el

equipo. Para esto se dispone de un script llamado *rc.user* ubicado en el directorio /*rtuqm/sbin* que es invocado como última acción del proceso de inicialización.

El contenido de este script deben ser comandos válidos del shell de QNX, por lo que es necesario conocimientos avanzados sobre el sistema operativo. El formato del archivo es tipo UNIX y debe ser editado únicamente con un editor de texto plano.

Ejemplo:

Se muestra a continuación el contenido del archivo rc.user para configurar un alias en la interfaz de red ETH0.

#Contenido ejemplo de /rtuqm/config/rc.user

Configuro un alias para ETH0, en 10.0.0.77/24 ifconfig dm0 alias 10.10.0.77 netmask 255.255.255.0

5. CONFIGURACIÓN RTUQM

El equipo se entrega con una configuración básica, que comprende los módulos fundamentales requeridos para su operación.

En este capítulo se presentan los parámetros más relevantes que el usuario deberá ajustar para amoldar el equipo a su caso de uso.

5.1. Archivos de configuración

En la siguiente tabla, se listan los módulos del RTUQM incluidos en la configuración básica y los archivos de configuración asociados.

Módulo RTUQM	Archivo de Configuración	Descripción Configuración
Global	rtuglobal.ini	Global UIT115-MP
Consola	consola.ini	UIT115-MP
Base de Datos		
Driver GENC	drvgenc_po.ini	Panel Operaciones
Driver RTU115	drvrtu115_uc.ini	Unidad Control (U01)
Driver RTU115	drvrtu115_ue1.ini	Unidad Expansión 1 (U02)
Driver RTU115	drvrtu115_ue2.ini	Unidad Expansión 2 (U05)
Lógicas Programadas	lógicas_supervision.ini	Supervisión
Display IED	displayied.ini	Display Virtual

Al conectarse con el Administrador RTUQM, el navegador de módulos permite apreciar los módulos en ejecución y acceder a sus correspondientes terminales:

Figura 5-1 : Configuración básica RTUQM

5.2. Configuración global

Los parámetros globales se configuran en el archivo de configuración rtuglobal.ini.

Parámetros Globales				
Grupo	Parámetro	Valor por defecto		
Zona Horaria	Zona Horaria	UYST3		
	Dirección IP (en0)	10.0.220		
Configuración de Red	Mascara de red (eno)	255.255.255.0		
	Dirección IP del router por defecto	10.0.250		
Access	Habilitar Samba	Si		
Acceso	Habilitar Telnet	Si		
Eventes Memorie	Capacidad lista de eventos	5000		
Eventos Memoria	Tipo de eventos habilitados	Todos		
	Habilitar log de eventos a disco	Si		
Log de Eventos	Días que se mantienen los archivos	15		
	Tipos de eventos habilitados	Todos excepto Cambio de estado		
Trap de Eventos	Habilitar el envío de eventos SNMP	No		

5.3. Configuración de celdas

Parámetros de entradas y salidas

Las entradas y salidas digitales de las celdas se procesan en los módulos 16ED y 08SR de las RTU115 que componen el módulo UIT115-MP. La configuración de los parámetros asociados se realiza en los archivos de configuración de las instancias del Driver RTU115 correspondiente.

De las entradas digitales, es posible configurar:

- Filtro CHF: por defecto habilitado, con umbrales de 6 y 4 eventos por segundo.
- Filtro de Rebotes: por defecto 30ms en todos los canales
- Inversión de señales: por defecto no se invierten las señales.

Salvo que la aplicación lo requiera, se recomienda mantener los valores por defecto.

De las salidas digitales, es posible configurar:

- Modo operación: debe configurarse para pulsos coordinados
- Tiempo de pulso, por defecto 12 segundos.

En caso de requerirse modificar alguno de estos parámetros, es importante tener claro a qué tarjeta y que canal corresponde cada señal. La siguiente tabla resume estas correspondencias.

Parámetros Celdas				
Grupo	Señal	Tarjeta	Canal	
	Estado INT	U01.R02	ED01 / ED02	
	Estado PAT	U01.R02	ED03 / ED04	
Celda 01	Estado Reserva 1	U01.R02	ED05	
	Estado Reserva 2	U01.R02	ED06	
	Mando INT	U01.R04	SD01 / SD02	
	Estado INT	U01.R02	ED09 / ED10	
	Estado PAT	U01.R02	ED11 / ED12	
Celda 02	Estado Reserva 1	U01.R02	ED13	
	Estado Reserva 2	U01.R02	ED14	
	Mando INT	U01.R04	SD03 / SD04	
	Estado INT	U01.R03	ED01 / ED02	
	Estado PAT	U01.R03	ED03 / ED04	
Celda 03	Estado Reserva 1	U01.R03	ED05	
	Estado Reserva 2	U01.R03	ED06	
	Mando INT	U01.R04	SD05 / SD06	
	Estado INT	U01.R03	ED09 / ED10	
	Estado PAT	U01.R03	ED11 / ED12	
Celda 04	Estado Reserva 1	U01.R03	ED13	
	Estado Reserva 2	U01.R03	ED14	
	Mando INT	U01.R04	SD07 / SD08	
	Estado INT	U05.R01	ED01 / ED02	
	Estado PAT	U05.R01	ED03 / ED04	
Celda 05	Estado Reserva 1	U05.R01	ED05	
	Estado Reserva 2	U05.R01	ED06	
	Mando INT	U05.R03	SD01 / SD02	
	Estado INT	U05.R01	ED09 / ED10	
	Estado PAT	U05.R01	ED11 / ED12	
Celda 06	Estado Reserva 1	U05.R01	ED13	
	Estado Reserva 2	U05.R01	ED14	
	Mando INT	U05.R03	SD03 / SD04	
	Estado INT	U05.R02	ED01 / ED02	
	Estado PAT	U05.R02	ED03 / ED04	
Celda 07	Estado Reserva 1	U05.R02	ED05	
	Estado Reserva 2	U05.R02	ED06	
	Mando INT	U05.R03	SD05 / SD06	
	Estado INT	U05.R02	ED09 / ED10	
	Estado PAT	U05.R02	ED11 / ED12	
Celda 08	Estado Reserva 1	U05.R02	ED13	
	Estado Reserva 2	U05.R02	ED14	
	Mando INT	U05.R03	SD07 / SD08	

Habilitación de Celdas

En caso de no utilizarse una celda, se recomienda no habilitar la misma a nivel de configuración. Esto permite una mejor interpretación a nivel de Panel de Operación y Display Virtual, así como aguas arriba a nivel de SCADA.

La forma de habilitar (o no habilitar) una celda dada es a nivel de configuración del Driver GENC, que registra en la Base de Datos un punto reflejando la opción elegida, disponible en la tabla de señales para ser exportado al SCADA.

En caso de que una celda no esté habilitada, en el Panel de Operación los LED correspondientes estarán apagados y el pulsador de mando bloqueado.

Asociación de DPF a una celda

Según el modelo elegido, la UIT115 dispondrá de hasta 2 DPF, en tanto que pueden controlar hasta 8 celdas.

Para asociar un DPF a una celda dada, se debe:

- 1. Asociar la celda en la configuración del cálculo DPF, a nivel del Driver RTU115
- 2. Asociar el cálculo a la celda, a nivel de Driver GENC

La UIT115 tiene configuradas dos instancias de cálculo DPF:

- Unidad de Expansión 1 Cálculo 02 DPF #1
- Unidad de Expansión 1 Cálculo 03 DPF #2

La tabla de puntos registrados por el cálculo DPF #1 comienza en la dirección base 21201, en tanto que la tabla del DPF #2 comienza en la dirección base 20401.

Cada cálculo DPF tienen un parámetro llamado ID Celda Asociada, que admite seleccionar en un menú desplegable la celda a la que se desea asociar el cálculo (Celda 1 a Celda 8). Por defecto, el DPF #1 se asocia a la Celda 1 y el DPF #2 se asocia a la celda 2.

Para asociar el cálculo a nivel del Driver GENC, es necesario configurar en el parámetro Dirección Base para DPF de la celda correspondiente la dirección base de la tabla de puntos del cálculo a asociar. En aquellas celdas que no tienen DPF asociado, este parámetro debe quedar en 0. Por defecto, se asocia el DPF #1 a la Celda 1 y el DPF #2 a la celda 2, configurando el parámetro Dirección Base para DPF en 20201 para la Celda 1, 20401 para la Celda 2 y 0 para las demás celdas.

5.4. Configuración de entradas/salidas libres

Las entradas y salidas digitales de las celdas se procesan en los módulos 16ED y 08SR de las RTU115 que componen el módulo UIT115-MP. La configuración de los parámetros asociados se realiza en los archivos de configuración de las instancias del Driver RTU115 correspondiente.

De las entradas digitales, es posible configurar:

- Filtro CHF: por defecto habilitado, con umbrales de 6 y 4 eventos por segundo.
- Filtro de Rebotes: por defecto 30ms en todos los canales
- Inversión de señales: por defecto no se invierten las señales.

Salvo que la aplicación lo requiera, se recomienda mantener los valores por defecto.

De las salidas digitales, es posible configurar:

- Modo operación: por defecto persistentes
- Tiempo de pulso: por defecto 12 segundos.

En caso de requerirse modificar alguno de estos parámetros, es importante tener claro a qué tarjeta y que canal corresponde cada señal. La siguiente tabla resume estas correspondencias.

Parámetros Entradas/Salidas Libres

Grupo	Señal	Tarjeta	Canal
	EDL01	U02.R05	ED01
	EDL02	U02.R05	ED02
	EDL03	U02.R05	ED03
	EDL04	U02.R05	ED04
	EDL05	U02.R05	ED05
	EDL06	U02.R05	ED06
	EDL07	U02.R05	ED07
Entradas	EDL08	U02.R05	ED08
Digitales Libres	EDL09	U05.R01	ED07
	EDL10	U05.R01	ED08
	EDL11	U05.R01	ED15
	EDL12	U05.R01	ED16
	EDL13	U02.R05	ED07
	EDL14	U02.R05	ED08
	EDL15	U02.R05	ED15
	EDL16	U02.R05	ED16
Salidas Digitales Libres	SDL01	U01.R05	SD01
	SDL02	U01.R05	SD02
	SDL03	U01.R05	SD03
	SDL04	U01.R05	SD04

5.5. Configuración de medidas BT

Las corrientes y tensiones a utilizar para determinar las medidas de BT se encuentran cableadas a la Unidad de Expansión 1 (U02). Estas son procesadas por la correspondiente instancia del Driver RTU115, que tiene configurado un cálculo de tipo ST3F.

Los parámetros a configurar son:

- Canales de tensión:
 - Relación de Transformación: por defecto 1.0
 - Unidades: por defecto 1.0 (V)
 - Amplitud Nominal: por defecto 380V
- Canales de corrientes:
 - Relación de Transformación: por defecto 1.0
 - Unidades: por defecto 1.0 (A)
 - Amplitud Nominal: por defecto 5A
- Cálculo ST3F:
 - Modo de Red: por defecto 4WY
 - Secuencia de Fases: por defecto Antihorario
 - Unidades de Potencias: por defecto 1.0
 - Unidades de Energías: por defecto 1.0

Los modelos xC-xD-**2P** cuentan con un segundo módulo de medidas BT, cuyas corrientes y tensiones se encuentran cableadas a la Unidad de Expansión 2 (U05). Son procesadas por la correspondiente instancia del Driver RTU115, que tiene configurado otro cálculo de tipo ST3F.

Para modificar los parámetros de las corrientes o las tensiones, es importante tener claro a qué tarjeta y que canal corresponde cada señal. La siguiente tabla resume estas correspondencias.

Parámetros Entradas/Salidas Libres					
Grupo	Señal	Tarjeta	Canal		
·	Fase A	U02.R01	01		
MRT1	Fase B	U02.R01	02		
NDTT	Fase C	U02.R01	03		
	Fase A	U02.R03	03		
Corrientes	Fase B	U02.R03	04		
MBT1	Fase C	U02.R03	05		
	Fase N	U02.R03	06		
Tensiones MBT2	Fase A	U05.R05	01		
	Fase B	U05.R05	02		
	Fase C	U05.R05	03		
Corrientes MBT2	Fase A	U05.R04	03		
	Fase B	U05.R04	04		
	Fase C	U05.R04	05		
	Fase N	U05.R04	06		

Previo a modificar los parámetros del cálculo ST3F, analizar el Anexo C.

5.6. Configuración de DPF

Las corrientes y tensiones a utilizar para determinar los DPF se encuentran cableadas a la Unidad de Expansión 1 (U02). Estas son procesadas por la correspondiente instancia del Driver RTU115, que tiene configurado dos cálculos de tipo DPF.

Los parámetros a configurar son:

- Canal de tensión:
 - Relación de Transformación: por defecto 1.0
 - Unidades: por defecto 1.0 (V)
 - Amplitud Nominal: por defecto 220V
- Canales de corrientes:
 - Relación de Transformación: por defecto 100.0
 - Unidades: por defecto 1.0 (A)
 - Amplitud Nominal: por defecto 500A
- Cálculo DPF:
 - Umbral de Falta Fase: por defecto 400A
 - Umbral de Falta Homopolar: por defecto 50A
 - Tiempo de Falta Fase: por defecto 100ms
 - Tiempo de Falta Homopolar: por defecto 100ms
 - Umbral Corriente Línea: por defecto 10A
 - Tiempo Confirmación Falta: por defecto 200ms
 - o Tiempo Restablecimiento Falta: por defecto 1000ms
 - o Tiempo Reset Falta: por defecto 60min
 - Modo Confirmación Falta: por defecto Por tensión o por corriente

Para modificar los parámetros de las corrientes o la tensión, es importante tener claro a qué tarjeta y que canal corresponde cada señal. La siguiente tabla resume estas correspondencias.

Parámetros Entradas/Salidas Libres					
Grupo	Señal	Tarjeta	Canal		
Tensión	Fase A	U02.R01	04		
Corrientes DPF #1	Fase A	U02.R02	01		
	Fase B	U02.R02	02		
	Fase C	U02.R02	03		
	Fase N	U02.R03	01		
	Fase A	U02.R02	04		
Corrientes DPF #2	Fase B	U02.R02	05		
	Fase C	U02.R02	06		
	Fase N	U02.R03	02		

Previo a modificar los parámetros de un cálculo DPF, analizar el Anexo B.

5.7. Configuración de display virtual

Como se detalla en la sección 6.2, la UIT115 permite la configuración de una serie de mímicos accesibles a modo de Display Virtual de forma remota y que simplifican el monitoreo de la misma.

En la configuración de fábrica, se incluyen los siguientes:

Mímico	Descripción	Archivo de Configuración
DV-C1	Celdas 01 a 04	uit_celdas.ini
DV-C2	Celdas 05 a 08	uit_celdas_2.ini
DV-F1	Supervisión Alimentación	uit_supervision_fue.ini
DV-F2	Módulo Fuente	uit_modulo_fuente.ini
DV-F3	Supervisión Batería	uit_supervision_bat.ini
DV-MBT1	Medidas Baja Tensión 1	uit_medidas_bt.ini
DV-MBT2	Medidas Baja Tensión 2	uit_medidas_bt_2.ini

DV-DPF1	Detección Paso de Falta 1	uit_dpf_1.ini
DV-DPF2	Detección Paso de Falta 2	uit_dpf_2.ini
DV-EDSD	Entrada/Salida Libre	uit_edsd_libres.ini
DV-COM	Supervisión General	uit_supervision_gral.ini
DV-SYS	Sistema	mimico_sistema.ini

5.8. Configuración de automatismos

El equipo incluye una serie de automatismos para supervisión de la alimentación y del estado y capacidad de carga de las baterías, que se describen en detalle en el Anexo D.

Es posible modificar el comportamiento de estos automatismos de dos formas:

- Modificando constantes definidas en la configuración del automatismo
- Modificando a través de comandos algunos set-points previstos en los automatismos

Las constantes son las siguientes

Nombre	Descripción
k_fUmbralVAC	Umbral para presencia de tensión (en V)
k_fUmbraIVBAT	Umbral para nivel crítico de batería (en V)
k_nTiempoLowBAT	Tiempo en segundos nivel crítico antes de comandar K02
k_fUmbralDescBAT	Valor por defecto del umbral de descarga de baterías (en V)
k_nPeriodoTest	Valor por defecto del período de ensayo de baterías (en horas)
k_nTiempoCargaBAT	Valor por defecto del tiempo de carga de baterías requerido antes
	de comenzar un test (en minutos)
k_nTiempoDescBAT	Valor por defecto del tiempo del ensayo de descarga de baterías
	(en minutos)

Los set-points son los siguientes:

Nombre	Descripción
m_io_fUmbralVBATSP	Comando setpoint umbral tensión de descarga (en V)
m_io_nTiempoCargaSP	Comando setpoint tiempo de precarga batería (en minutos).
m_io_nTiempoDescSP	Comando setpoint tiempo de descarga batería (en minutos).
m_io_nPeriodoTestSP	Comando setpoint período de ensayo automático (en horas)

5.9. Comunicaciones SCADA

Para establecer las comunicaciones aguas arriba, será necesario configurar una o más instancias de módulos de comunicaciones.

Se encuentran disponibles los siguientes protocolos:

- IEC 61850 Ed1. y Ed2.
- IEC 60870-5-101/104
- DNP3
- Modbus

Para la configuración de los parámetros propios del protocolo, referirse a [7] y [8].

Para seleccionar los puntos a exportar, referirse a [3].

6. OPERACIÓN

En este capítulo se describen aspectos relativos a la operación sobre la UIT, tanto desde el Panel de Operación Local (PO) como mediante el Display Virtual (DV).

6.1. Panel de Operación Local

El módulo UIT115-PO permite monitoreo y control local de la UIT115. Existen dos modelos de PO, uno para la UIT115-4C y otro para la UIT115-8C.

El módulo UIT115-PO se comunica con el módulo principal UIT115-MP para obtener el estado de todas las señales que se presenta en su interfaz de leds y para enviarle las solicitudes de mando realizadas por el operador mediante pulsadores.

Figura 6-1 : Panel de Operaciones de UIT115-4C/8C

<u>Alarmas y Estados</u>

Se señalizan mediante LED todas las alarmas de interés:

- 24V OK: señaliza presencia de la alimentación de 24Vcc de uso interno en la UIT115
- COM OK: señaliza el estado de la comunicación entre el PO y el módulo UIT115-MP
- FALTA AC: señaliza la falta de tensión de alimentación alterna del equipo
- FALLA BAT: señaliza que el test de baterías detectó baterías ausentes o degradadas
- FALLA EM: señaliza ausencia de tensión de 48Vcc para los elementos de maniobra

En estado normal, deben encender únicamente 24V OK y COM OK.

Selección y señalización de Modo de Mando

Con el objetivo de garantizar la unicidad de mando, el equipo cuenta con una llave selectora de tipo cuarto de vuelta de 22mm, que permite al operador realizar la selección del modo mando:

- REMOTO: se inhiben los mandos en el PO
- LOCAL: se inhiben los mandos recibidos por comunicaciones

El modo de mando elegido es señalizado mediante dos LED en el propio panel (LOCAL/REMOTO) y reportado por comunicaciones a niveles superiores.

Para garantizar la unicidad de mando, es necesario que los módulos de comunicaciones hacia niveles superiores tengan correctamente configurado el parámetro de entrada de inhibición de mandos.

Una configuración errónea de un módulo de comunicaciones hacia niveles superiores puede implicar la pérdida de la unicidad de mando.

Monitoreo y Control de estado de Celdas:

En el PO se presenta un diagrama de cada celda. Mediante señalización por LED, se indica la posición abierto/cerrado/indefinido del Interruptor (INT) y el estado del seccionador de puesta a tierra (PAT). Se dispone de un pulsador para efectuar un mando para apertura/cierre del Interruptor.

A nivel de configuración, es posible habilitar o deshabilitar individualmente cada celda. En caso de que una celda no esté habilitada, los LED correspondientes estarán apagados y el pulsador de mando bloqueado.

Para señalizar la PAT, se cuenta con un único LED que encenderá cuando la señal de PAT Abierto sea válida OFF y la señal PAT Cerrado sea válida ON.

En el caso del INT, cuenta con tres LED:

- ABIERTO: enciende con las señales INT Abierto válido ON e INT Cerrado válido OFF.
- CERRADO enciende con las señales INT Abierto válido OFF e INT Cerrado válido ON.
- DSD: enciende con las señales INT Abierto e INT Cerrado válidas y con el mismo estado.

En cualquier otro caso, los tres LED quedan apagados.

Para ejecutar un mando sobre el INT de una celda, es necesario presionar de forma simultánea el pulsador de la celda y el pulsador MANDO. Cuando el INT está cerrado, el mando será de Apertura, cuando el INT está abierto, el mando será de Cierre, en cualquier otro caso el mando es bloqueado.

Adicionalmente, se presenta el estado de las entradas digitales de reserva de cada celda.

Detección de Paso de Falta:

Al momento de configurar la UIT115, cada DPF se asocia a una celda. En el PO se dispone para cada celda de dos LED, ACTIVO y FALTA, cuyo comportamiento será:

- ACTIVO: enciende si hay un DPF asociado a la celda
- FALTA: enciende si hay una falta en el DPF asociado, que podrá ser de fase u homopolar

Si se desea reconocer la falta en una celda dada, deben presionarse de forma simultánea el pulsador de la celda y el pulsador RESTABLECER. Esta acción sólo tendrá efecto si hay un DPF asociado a la celda en cuestión.

Si se desea hacer una prueba de DPF, deben presionarse de forma simultánea el pulsador de la celda y el pulsador PRUEBA. Esta acción sólo tendrá efecto si hay un DPF asociado a la celda en cuestión.

Señalización de estado de Entradas Digitales libres

El estado de cada una de las ED libres es señalizado mediante un LED.

Mando de Salidas Digitales libres

Se dispone de un pulsador para cada SD libre y un LED que señaliza el estado de la misma.

Para ejecutar un mando sobre una SD libre, es necesario presionar de forma simultánea el pulsador de la salida correspondiente y el pulsador MANDO.

Prueba de Lámparas

Para verificar el estado de los LED de señalización, es posible realizar una prueba de lámparas.

Deben presionarse de forma simultánea dos pulsadores cualesquiera, con la restricción de que no sea ninguno de los siguientes: MANDO, PRUEBA y RESTABLECER.

6.2. Display Virtual

La UIT115 permite la configuración de una serie de mímicos accesibles a modo de Display Virtual de forma remota y que simplifican el monitoreo de la misma

La forma de acceder a los mismos es mediante la herramienta Terminal RTUQM, que complementa al Administrador RTUQM, pudiendo ejecutarla de forma independiente o invocarla directamente desde la interfaz del Administrador RTUQM:

Figura 6-2 : Acceso a Terminal desde Administrador RTUQM

Los mímicos disponibles dependen de la configuración del equipo. La UIT115 se entrega con una serie de mímicos por defecto, teniendo el cliente la potestad de modificarlos o crear nuevos mímicos.

Como se indica en la sección 4.5, el acceso al Display Virtual mediante se habilita a nivel de configuración del Módulo Display IED (displayied) del Sistema RTUQM, mediante el parámetro *Permite conexiones de display remoto* (RemoteConsoleEnabled). En caso de habilitarse, es posible configurar si se permite o no comandar desde el display remoto, mediante el parámetro *Permite comando desde display remoto*.

A continuación se describen los mímicos por se configuran por defecto en una UIT115.

Mímico de monitoreo y control de Celdas

El mímico DV-C1 (CELDAS) permite monitorear del estado de 4 celdas, de forma análoga al PO.

Para cada celda, se indica si está configurada, se presenta el estado de INT y PAT, se indica si tiene un DPF conectado y si hay una falta.

Si el mando remoto desde DV está habilitado, es posible operar sobre los INT. Para esto, debe ingresarse a modo de mando y seleccionar la celda sobre la que se desea operar.

Figura 6-3 : Display Virtual – Mímico DV-C1

Mímicos para monitoreo de Alimentación y Baterías

Se dispone de 3 mímicos complementarios:

- DV-F1: SUPERVISIÓN ALIMENTACION
- DV-F2: MÓDULO FUENTE
- DV-F3: SUPERVISIÓN BATERÍA

El mímico DV-F1 resume medidas, estados y alarmas del módulo de alimentación UIT115-FUE.

Figura 6-4 : Display Virtual – Mímico DV-F1

El mímico DV-F2 presenta un diagrama lógico del conexionado interno del módulo UIT115-FUE, complementado con algunas medidas y estados.

Figura 6-5 : Display Virtual – Mímico DV-F2

El mímico DV-F3 permite analizar el comportamiento del equipo cuando se realiza un test de baterías.

SION B/	١ΤE	RIA		
ENSAYAR				
		SET POINTS	S	
499 min		600 min	0	
23 h		120 h	e Reset	
53.6 V		52.0 V		
0 min		300 min		
LARMAS				
) FA	LLA BAT		
0) FA	LLA K1		
	SION BA ENSAYAR 499 min 23 h 53.6 V 0 min ARMAS	SION BATE ENSAYAR 499 min / 23 h / 53.6 V > 0 min / 0 min /	SION BATERIA ENSAYAR 499 min / 600 min 23 h / 120 h 53.6 V > 52.0 V 0 min / 300 min ARMAS IDAD _ FALLA BAT FALLA K1	SION BATERIA ENSAYAR SET POINTS 499 min / 600 min O 23 h / 120 h RESET 53.6 V > 52.0 V 0 min / 300 min ARMAS IDAD O FALLA BAT O FALLA K1

Figura 6-6 : Display Virtual – Mímico DV-F3

Mímicos para monitoreo de Medidas Baja Tensión

Los mímicos DV-MBT1 y DV-MTB2 (MEDIDAS BT) resumen las principales medidas de un sistema trifásico: corrientes y tensiones, frecuencia, potencias y factor de potencia. Adicionalmente se incluye un diagrama de fasores.

Figura 6-7 : Display Virtual – Mímico DV-MBT

Mímicos para monitoreo de Detección de Paso de Falta

El mímico DV-DPF1 y DV-DPF2 resumen la información de los algoritmos de DPF. Además de informar la celda a la que está asociado el DPF, presentan las medidas más relevantes, señalizan arranque y falta de fase u homopolar, incluyendo los contadores de arranques y faltas.

Es posible desde este mímico enviar mandos para reconocer una falta, para la prueba de DPF y para reiniciar los contadores de faltas.

Figura 6-8 : Display Virtual – Mímicos DV-DPF

Mímicos para monitoreo de Entrada/Salida Libre

El mímico DV-EDSD permite supervisar el estado de las entradas digitales libres así como conocer el estado y efectuar mandos sobre las salidas digitales libres. La cantidad de señales de cada tipo depende del modelo de UIT-

ENTRADAS Y SALIDAS LIBRES		
 EDL01 EDL02 EDL03 EDL04 EDL05 EDL06 EDL07 EDL08 	⊖ SDL01 ⊖ SDL02	

Figura 6-9 : Display Virtual – Mímico DV-EDSD

Mímico de supervisión generales

El mímico DV-COM presenta información del estado de la comunicación interna entre los módulos que componen la UIT, así como la temperatura medida por el equipo.

ESTADOS Y COMUNICACIONES					
TEMPERATURA		25.7 C			
MODULO	HW	CONFIG	COM		
UNIDAD CONTROL	ΟΚ	ΟΚ			
UNIDAD EXPANSION	ΟΚ	OK			
PANEL OPERACIONES	ΟΚ	οκ	ΟΚ		

Figura 6-10 : Display Virtual – Mímico DV-COM

El mímico DV-SYS presenta información general de sistema, como ser número de serie, versión del RTUQM, memoria disponible, carga de procesador y dirección IP.

INFORMACION DEL SISTEMA		
NODO:	RTU115	
NUMERO DE SERIE:	TEL-7100-0223	
VERSION RTUQM:	5.4.0.0	
MEMORIA (LIBRE / TOTAL):	392.8 / 524.3	MB
DISCO (LIBRE / TOTAL):	5642.4 / 6350.2	MB
VELOCIDAD CPU:	800.0	MHz
CARGA DE CPU:	23	%
TIEMPO ON:	0d 06h 56m 12s	
DIRECCION IP EN0:	10.0.0.220	

Figura 6-11 : Display Virtual – Mímico DV-SYS

7. MODELOS Y OPCIONES

El código de producto especifica las opciones incorporadas:

Opciones o variantes disponibles bajo requerimiento:

- Tipo de puerto Ethernet: por defecto RJ45, opcionalmente LC 1310nm
- Relación de transformación de captores de corriente: por defecto 500A/5A
- Rango de entradas de corriente y tensión para Medidas BT: por defecto 380Vca y 5A
- Tensión de alimentación para equipo de comunicaciones: por defecto 12Vcc
- Largo de cables de control hacia las celdas: por defecto 12m

8. ESPECIFICACIONES TÉCNICAS

8.1. Alimentación

Alimentación Principal		
Rango de entrada nominal	110Vac/220Vca, 50/60Hz	
Rango de entrada operativo	90-260Vca, 50/60Hz ± 3Hz	
Protección	Termo-magnética MCB tipo C, 10A	
Consumo	Salida 12Vcc – 60W – Equipo Comunicaciones, permanente	
	Salida 24Vcc – 50W – Uso interno, permanente	
	Salida 48Vcc – Máximo 10A durante 12s, 4 veces por hora.	
Conexión	Borneras riel DIN para cable de hasta 4mm ²	

Alimentación Tomacorrientes		
Rango de entrada nominal	110Vac/220Vca, 50/60Hz	
Тіро	Schuko	
Protección	Termo-magnética MCB tipo C, 10A	
Conexión	Borneras riel DIN para cable de hasta 4mm ²	

Banco de Baterías		
Composición del banco	4 baterías selladas, libres de mantenimiento	
Capacidad individual de baterías	12V 12Ah	
Capacidad total del banco	48V 12Ah	
Vida útil	> 5años @ 20°C	
Tiempo de carga	10 a 12h	
Autonomía desde baterías	> 6 horas + 4 ciclos de apertura/cierre	
Supervisión capacidad de almacenamiento	Mediante automatismo, ver Anexo D	
de baterías		

8.2. Entradas digitales

Entradas Digitales - Especificaciones generales		
Cantidad	48/80, según modelo	
Agrupamiento	1 común (negativo) cada 8 entradas	
Тіро	Opto-acopladas.	
Procesamiento	Muestreo cada 1ms, filtros digitales configurables	
Otros	Protección contra inversión de polaridad	
Máximo porcentaje de entradas energizadas	100%	
en forma simultanea		
Tensión nominal entrada	48Vcc	
Impedancia de entrada	22 kΩ	
Carga	<120mW@48Vcc	
Tensión máxima permanente	100Vcc	
Conexión ED Celdas	Conectores tipo Harting 10A	
Conexión ED Libres	Borneras de riel para cable de hasta 2,5mm ²	
Conexión ED Uso Interno	Bornera enchufable para cable de hasta 0,5mm ²	

Entradas Digitales – Especificaciones particulares según modelo		
Modelo	UIT115- 4C -xD-xP	UIT115- 8C -xD-xP
ED Celdas	24	48
ED Libres	8	16
ED Uso Interno	16	16
ED Total	48	80

8.3. Salidas digitales

Salidas Digitales - Especificaciones generales		
Cantidad	16/24 según modelo	
Agrupamiento	No agrupadas. Dos pinos por cada salida.	
Тіро	Relé contacto seco NA	
Carga en alimentación – SD Celdas	<1W por salida energizada	
Carga en alimentación – SD Libres	<200mW por salida energizada	
Poder Corte en CC – SD Celdas	10A @ 48Vcc	
Poder Corte en CC – SD Libres	5A @ 30Vcc	
Poder Corte en CA – SD Libres	7A @ 250Vca	
Carga en alimentación – SD Libres/Interno	<200mW por salida energizada	

Otros	Supervisión de circuito de comando.
Máximo porcentaje de salidas energizadas	100%
en forma simultanea	
Vida útil	>10 ⁵ ciclos
Conexión SD Celdas	Conectores tipo Harting 10A
Conexión SD Libres	Borneras de riel para cable de hasta 2,5mm ²
Conexión SD Uso Interno	Bornera enchufable para cable de hasta 0,5mm ²

Salidas Digitales – Especificaciones particulares según modelo		
Modelo	UIT115- 4C -xD-xP	UIT115- 8C -xD-xP
SD Celdas	8	16
SD Libres	2	4
SD Uso Interno	6	4
SD Total	16	24

8.4. Entradas de medida directa

Medidas Directas - Especificaciones generales		
Magnitudes calculadas	Vrms, Irms, P, Q, S, PF, f, ángulos, distorsión, desbalance	
Precisión medidas	Corrientes y Tensiones rms: 0.2% nominal	
	Potencia Activa:	0.5% nominal
	Potencia Reactiva, Aparente	e: 1% nominal
	Frecuencia:	0.01Hz
	Factor de Potencia:	0.01
	Ángulos:	0.5°
Resolución	0.1W, 0.1VAR, 0.1VA, 0.01Hz, 0.01 (PF), 0.1°	
Procesamiento	32 muestras por ciclo, 16 bits	
	Muestreo simultáneo de ent	radas.
	Relación de transformación	configurable por canal
	Cálculos: 1xST3F, 2xDPF	
Cálculo para Medidas BT	Opción 1P: 1xST3F, con 4 corrientes y 3 tensiones	
	Opción 2P: 2xST3F, con 4 c	corrientes y 3 tensiones cada uno
Cálculos para Detección Paso de Falta	Opción 1D: 1xDPF, con 4 corrientes y 1 tensión	
	Opción 2D: 2xDPF, con 4 co	orrientes cada uno y 1 tensión
Otros	Calibrada en fábrica, parám	etros en memoria no volátil.

Medidas Directas - Corrientes		
Modelo	UIT115-xC-xD- 1P	UIT115-xC-xD- 2P
Cantidad	12	18
Тіро	Aisladas por transformador	
Corriente nominal entrada (In)	5A	
Resolución	0.001A	
Frecuencia nominal entrada	50-60Hz	
Rango de medición (%In)	1-120%ln	
Sobre-corriente permanente	150% In	
Impedancia de entrada	36μΩ	
Carga (In)	<1mVA	
Conexión	Borneras de riel seccionables, de prueba, para cable de hast	cortocircuitables y con puntas a 4mm ²

Medidas Directas - Tensiones		
Modelo	UIT115-xC-xD- 1P	UIT115-xC-xD- 2P
Cantidad	6	12
Тіро	Aisladas en grupos de 3	
Tensión nominal entrada (In)	380V	
Resolución	0.1V	
Frecuencia nominal entrada	50-60Hz	
Rango de medición (%Vn)	1-150%Vn	
Sobre-tensión permanente	200% Vn	
Impedancia de entrada	>2MΩ	
Carga (Vn)	<100mVA	
Conexión	Borneras de riel seccionables y con puntas de prueba, para cable de hasta 4mm ²	

8.5. Medida de temperatura

Medidas Temperatura – Especificaciones		
Cantidad	1	
Тіро	Interna al gabinete	

Rango de Medida	-20°C a +65°C
Resolución	0.01°C
Precisión	+/-1°C

8.6. Control de celdas

Control de Celdas – Especificaciones		
Cantidad de Celdas a controlar	Opción 4C: 4	
	Opción 8C: 8	
Cantidad de ED por Celda	6 (2 para INT, 2 para PAT, 2 de reserva)	
Cantidad de SD por Celda	2 (apertura/cierre de INT)	
Tensión para Elementos de Maniobra (EM)	48Vcc -10/+20%	
Protección de Tensión para EM	Por fusible	
Conexionado en gabinete	Tipo Harting 10A, ver conexionado en sección 3.8	
Cableado a celdas	Cable de control, 10 conductores x 1,5mm ² , largo 12m	

8.7. Captores corriente

Captores de Corriente – Especificaciones				
Cantidad de juegos	Opción 1D: 1			
	Opción 2D: 2			
Contenido de cada juego	3 captores + 1 cable de conexión			
Captores de Corriente				
Tipo	Transformador toroidal de núcleo partido			
Diámetro interior	55mm			
Relación de transformación	500A/5A			
Corrientes corto-circuito	25kA			
Corrientes dinámicas	60kA			
Cable de Conexión				
Тіро	Cable de control, 10 conductores x 1,5mm ²			
Largo	12m			
Terminación gabinete	Terminales de compresión tubulares aislados			
Terminación captores	Conectores polarizados			
Conexionado en gabinete				
Corrientes	Borneras seccionables, cortocircuitables, con punto prueba			
Tensiones	Borneras seccionables con punto prueba			

8.8. CPU

CPI	U - Especificaciones
Procesador	
Arquitectura	ARM Cortex A8, 800MHz
Memoria RAM	512MB, 133MHz
Memoria ROM	Tipo micro-sd, 8GB
Otros	Watchdog y RTC hardware
Sistema Operativo	QNX
Aplicativo Telecontrol	Sistema RTUQM
Puerto Ethernet	
Cantidad	1
Interface	Ethernet 100Mbit
Conexión	SFP
Opciones SFP	100BASE-FX (LC 1310nm) / 100BASE-TX (RJ45)
Puertos Seriales RS232	
Cantidad	5
Señales	TXD, RXD, RTS, CTS, GND
Velocidad	hasta 115200bd
Conexión	Bornera enchufable para cable de 0.2 a 1.5mm ²
Puerto Seriales RS485	
Cantidad	1
Señales	DA, DB, GND
Velocidad	hasta 115200bd
Conexión	Bornera enchufable para cable de 0.2 a 1.5mm ²
Protocolos de comunicaciones	
IEC-61850 Ed1 y Ed2	Cliente y servidor, soportando MMS y GOOSE
IEC-60870-5-101 y 104	Maestro y esclavo
DNP3	Maestro y esclavo
Modbus	Maestro y esclavo, modos TCP y RTU
Driver RTU1151	Específico para módulos de entrada/salida de RTU115

Otros	Drivers para hardware I/O RT0587 y RT0194
	Drivers para relés legacy seriales (DPU, SMOR, etc.)
Sincronización Horaria	IEEE 1588:2008 (PTPv2)
	NTPv4
	IRIG-B (requiere hardware externo adicional)
	Por protocolos: IEC 60870-5-101/104, DNP3
Lógicas Programadas	Lenguaje ST IEC 61131-3
	Facilidades para depuración y monitoreo en tiempo real
Software de Gestión	
Тіро	Aplicativo para SO Windows 7 o superior
Idioma	Español
Niveles de Acceso	Administración, Operación, Visualización, Lógicas
Eventos de Sistema	
Lista de Eventos	En memoria volátil. Tipo FIFO, hasta 5000 eventos.
Log de Eventos	En memoria de estado sólido. Archivos exportables.
Traps de Eventos	Por SNMP

8.9. Panel de operación

Panel de Operación – Especificaciones			
Modo de Mando			
Selección	Mediante llave giratoria de cuarto de vuelta		
Señalización	Local / Remoto		
Celdas			
Estados	Interruptor / Puesta a Tierra / Reserva 1 / Reservas 2		
Mandos	Interruptor		
DPFs			
Asociación	Por celda		
Estado	Activo / Falta		
Mando	Restablecimiento / Prueba		
Otros			
Estados	Alimentación / Comunicaciones		
Alarmas	Falta AC, Falla Batería, Falla EM		
Estados	ED Libres, SD Libres		
Mandos	SD Libres		

8.10. Mecánicas y ambientales

Gabinete - Especificaciones				
Material	Metal pintado con pintura electroestática (≥60µm)			
Dimensiones	720mm x 980mm x 300mm			
Peso	65kg sin baterías, 80kg con baterías			
Fijación	Montaje en pared, se incluyen accesorios			
Ventilación	No requiere ventilación			
Espacio para Equipo de Comunicaciones	200mm x 150mm x 150mm, en bandeja lateral dedicada			
Prensa-estopas para acometida				
Tipo M20	3			
Tipo M25	5			
Тіро М32	5			

Condiciones Ambientales - Especificaciones		
Temperatura operativa	-5°C a +65°C	
Temperatura almacenamiento	-20°C a +65°C	
Humedad relativa	0 95%, sin condensación	

IEC 60	529 - Especificaciones
Grado IP	IP30

9. MANTENIMIENTO

Antes de realizar ninguna tarea de mantenimiento, leer atentamente las Precauciones de Seguridad incluidas al comienzo del documento.

Des-energizar completamente el equipo antes de realizar ninguna tarea de mantenimiento.

Tome precauciones adecuadas contra descargas electrostáticas (ESD) antes de acercarse al interior del equipo, para evitar daños sobre el mismo.

Todo circuito electrónico o componente del equipo no mencionado en esta sección debe ser únicamente accedido o modificado por el fabricante o un representante técnico previamente capacitado por el mismo.

9.1. Sustitución de Baterías

El equipo utiliza 4 baterías de 12V 12Ah, selladas y libres de mantenimiento.

Atención: riesgo de incendio en caso de reemplazar la batería por una de tipo incorrecto o de colocar la batería con la polaridad invertida.

Realizar el descarte de las baterías reemplazadas según las reglamentaciones nacionales y/o locales.

Utiliar baterías cuyas características no sean las indicadas en este manual puede generar anomalís, inclusio si se utilizan baterías de mayor capacidad.

El equipo realiza un test periódico de baterías, por lo que es posible monitorear el estado de las mismas de forma remota.

Los parámetros recomendados para el test de baterías fueron cuidadosamente elegidos para las baterías seleccionadas.

El procedimiento para la sustitución de las baterías es el siguiente:

- 1. Des-energizar el equipo, apagando las llaves termo-magnéticas en el siguiente orden:
 - a. Q03, desconectando el tomacorriente.
 - b. Q02, desconectando el banco de baterías.
 - c. Q01, desconectando la entrada de alimentación alterna.
- 2. Verificar que el equipo este completamente des-energizado. Todos los leds del PO deben estar apagados.
- 3. Retirar los dos soportes de fijación. Se requiere una llave de 10mm poder destornillar las tuercas de cabeza hexagonal que los fijan al gabinete.
- 4. Desconectar y retirar los cables de los que conectan las baterías entre sí y a la UIT. Las conexiones son mediante terminales de tipo faston, por lo que la desconexión es manual.

- 5. Retirar las baterías a reemplazar.
- 6. Si las baterías tuvieron algún tipo de pérdida y se detecta líquido en la bandeja sobre la que estaban montadas, limpiar la misma con una mezcla de agua y bicarbonato de sodio o reemplazarla por una nueva.
- 7. Montar las baterías sustitutas en la bandeja y conectarlas, siguiendo las indicaciones descritas en la sección 3.3.
- 8. Colocar nuevamente los soportes de fijación.
- 9. Energizar el equipo, encendiendo las llaves termo-magnéticas en el siguiente orden:
 - a. Q01, conectando la entrada de alimentación alterna.
 - b. Q02, conectando el banco de baterías.
 - c. Q03, conectando el tomacorriente.

9.2. Sustitución de Fusibles

El equipo proteger la tensión de mando para los elementos de maniobra mediante fisibles. La cantidad de fusibles depende del modelo:

- El modelo UIT115-4C cuenta con un único fusible, ubicado en la tarjeta auxiliar U04, protegiendo la tensión de mando de las 4 celdas.
- El modelo UIT115-8C cuenta con dos fusibles, uno ubicado en la tarjeta auxiliar U04, protegiendo la tensión de mando de las celdas 01 a 04 y el otro en la tarjeta auxiliar U12, protegiendo la tensión de mando de las celdas 05 a 08.

El equipo monitorea el estado de los fusibles, siendo posible conocer el mismo remotamente.

Los fusibles son de vidrio de 30mm. El valor por defecto es de 5A, pero puede ser reemplazado por un valor acorde a la corriente máxima requerida para operar sobre los elementos de maniobra de la estación.

El procedimiento para la sustitución de los fusibles es el siguiente:

- 1. Des-energizar el equipo, apagando las llaves termo-magnéticas en el siguiente orden:
 - a. Q03, desconectando el tomacorriente.
 - b. Q02, desconectando el banco de baterías.
 - c. Q01, desconectando la entrada de alimentación alterna.
- 2. Verificar que el equipo este completamente des-energizado. Todos los leds del PO deben estar apagados.
- 3. Retirar el fusible a reemplazar de su zócalo.
- 4. Colocar el nuevo fusible en el zócalo.
- 5. Energizar el equipo, encendiendo las llaves termo-magnéticas en el siguiente orden:
 - a. Q01, conectando la entrada de alimentación alterna.
 - b. Q02, conectando el banco de baterías.
 - c. Q03, conectando el tomacorriente.

A. LISTADO DE BORNES Y CONECTORES

A.1. Borneras Frontera

Bornera	ld Borne	Función	4C- 1D- 1P	4C- 2D- 1P	4C- 2D- 2P	8C- 2D- 1P	8C- 2D- 2P
X.SD	01A	Salida Libre 01 – NA	Х	Х	Х	Х	Х
X.SD	01B	Salida Libre 01 – C	Х	Х	Х	Х	Х
X.SD	02A	Salida Libre 02 – NA	Х	Х	Х	Х	Х
X.SD	02B	Salida Libre 02 – C	Х	Х	Х	Х	Х
X.SD	03A	Salida Libre 03 – NA				Х	Х
X.SD	03B	Salida Libre 03 – C				Х	Х
X.SD	04A	Salida Libre 04 – NA				Х	Х
X.SD	04B	Salida Libre 04 – C				Х	Х
X.ED	01+	Entrada Libre 01 - Positivo	Х	Х	Х	Х	Х
X.ED	01	Entrada Libre 01 - Señal	Х	Х	Х	Х	Х
X.ED	02+	Entrada Libre 02 - Positivo	Х	Х	Х	Х	Х
X.ED	02	Entrada Libre 02 - Señal	Х	Х	Х	Х	Х
X.ED	03+	Entrada Libre 03 - Positivo	Х	Х	Х	Х	Х
X.ED	03	Entrada Libre 03 - Señal	Х	Х	Х	Х	Х
X.ED	04+	Entrada Libre 04 - Positivo	Х	Х	Х	Х	Х
X.ED	04	Entrada Libre 04 - Señal	Х	Х	Х	Х	Х
X.ED	05+	Entrada Libre 05 - Positivo	Х	Х	Х	Х	Х
X.ED	05	Entrada Libre 05 - Señal	Х	Х	Х	Х	Х
X.ED	06+	Entrada Libre 06 - Positivo	Х	Х	Х	Х	Х
X.ED	06	Entrada Libre 06 - Señal	Х	Х	Х	Х	Х
X.ED	07+	Entrada Libre 07 - Positivo	Х	Х	Х	Х	Х
X.ED	07	Entrada Libre 07 - Señal	Х	Х	Х	Х	Х
X.ED	-80	Entrada Libre 08 - Positivo	Х	Х	Х	Х	Х
X.ED	08	Entrada Libre 08 - Señal	Х	Х	Х	Х	Х
X.ED	09+	Entrada Libre 09 - Positivo				Х	Х
X.ED	09	Entrada Libre 09 - Señal				Х	Х
X.ED	10+	Entrada Libre 10 - Positivo				Х	Х
X.ED	10	Entrada Libre 10 - Señal				Х	Х
X.ED	11+	Entrada Libre 11 - Positivo				Х	Х
X.ED	11	Entrada Libre 11 - Señal				Х	Х
X.ED	12+	Entrada Libre 12 - Positivo				Х	Х
X.ED	12	Entrada Libre 12 - Señal				Х	Х
X.ED	13+	Entrada Libre 13 - Positivo				Х	Х
X.ED	13	Entrada Libre 13 - Señal				Х	Х
X.ED	14+	Entrada Libre 14 - Positivo				Х	Х
X.ED	14	Entrada Libre 14 - Señal				Х	Х
X.ED	15+	Entrada Libre 15 - Positivo				Х	Х
X.ED	15	Entrada Libre 15 - Señal				Х	Х
X.ED	16+	Entrada Libre 16 - Positivo				Х	Х
X.ED	16	Entrada Libre 16 - Señal				Х	Х

Bornera	ld Borne	Función	4C- 1D- 1P	4C- 2D- 1P	4C- 2D- 2P	8C- 2D- 1P	8C- 2D- 2P
X.MBT	01	Tensión Fase A	Х	Х	Х	Х	Х
X.MBT	02	Tensión Fase B	Х	Х	Х	Х	Х
X.MBT	03	Tensión Fase C	Х	Х	Х	Х	Х
X.MBT	04	Tensión Neutro	Х	Х	Х	Х	Х
X.MBT	05	Corriente Fase A – ingreso	Х	Х	Х	Х	Х
X.MBT	06	Corriente Fase B – ingreso	Х	Х	Х	Х	Х
X.MBT	07	Corriente Fase C – ingreso	Х	Х	Х	Х	Х
X.MBT	08	Corriente Fase A – retorno	Х	Х	Х	Х	Х
X.MBT	09	Corriente Fase B – retorno	Х	Х	Х	Х	Х
X.MBT	10	Corriente Fase C – retorno	Х	Х	Х	Х	Х
X.MBT	11	Tensión Fase A			Х		Х
X.MBT	12	Tensión Fase B			Х		Х
X.MBT	13	Tensión Fase C			Х		Х
X.MBT	14	Tensión Neutro			Х		Х
X.MBT	15	Corriente Fase A – ingreso			Х		Х
X.MBT	16	Corriente Fase B – ingreso			Х		Х
X.MBT	17	Corriente Fase C – ingreso			Х		Х
X.MBT	18	Corriente Fase A – retorno			Х		Х
X.MBT	19	Corriente Fase B – retorno			Х		Х
X.MBT	20	Corriente Fase C – retorno			Х		Х
X.DPF	01	DPF 1 – Corriente Fase A – ingreso	Х	Х	Х	Х	Х
X.DPF	02	DPF 1 – Corriente Fase B – ingreso	Х	Х	Х	Х	Х
X.DPF	03	DPF 1 – Corriente Fase C – ingreso	Х	Х	Х	Х	Х
X.DPF	04	DPF 1 – Corriente Fase A – retorno	Х	Х	Х	Х	Х
X.DPF	05	DPF 1 – Corriente Fase B – retorno	Х	Х	Х	Х	Х
X.DPF	06	DPF 1 – Corriente Fase C – retorno	Х	Х	Х	Х	Х
X.DPF	07	DPF 2 – Corriente Fase A – ingreso	Х	Х	Х	Х	Х
X.DPF	08	DPF 2 – Corriente Fase B – ingreso	Х	Х	Х	Х	Х
X.DPF	09	DPF 2 – Corriente Fase C – ingreso	Х	Х	Х	Х	Х
X.DPF	10	DPF 2 – Corriente Fase A – retorno	Х	Х	Х	Х	Х
X.DPF	11	DPF 2 – Corriente Fase B – retorno	Х	Х	Х	Х	Х
X.DPF	12	DPF 2 – Corriente Fase C – retorno	Х	Х	Х	Х	Х
X.DPF	13	DPF 1 / DPF 2 – Tensión L	Х	Х	Х	Х	Х
X.DPF	14	DPF 1 / DPF 2 – Tensión N	Х	Х	Х	Х	Х
X.CA	L	Alimentación – Línea	Х	Х	Х	Х	Х
X.CA	Ν	Alimentación – Neutro	Х	Х	Х	Х	Х
X.SA	L	Servicios Auxiliares – Línea		Х	Х	Х	Х
X.SA	Ν	Servicios Auxiliares – Neutro		Х	Х	Х	Х
X.CC12	+	Positivo 12Vcc	Х	Х	Х	Х	Х
X.CC12	+	Positivo 12Vcc	Х	Х	Х	Х	Х
X.CC12	-	Negativo 12Vcc	Х	Х	Х	Х	Х
X.CC12	-	Negativo 12Vcc	Х	Х	Х	Х	Х

Observación: en versiones anteriores del producto, X.SA se denominaba X.TC.

A.2. Conectores de Comunicaciones

Equipo	ld Conector	Función	4C 1D 1P	4C 2D 1P	4C 1D 2P	8C 1D 1P	8C 2D 2P
U01.CPU	ETH0	Puerto Ethernet	Х	Х	Х	Х	Х
U01.CPU	COM01	Puerto Serial RS232 libre	Х	Х	Х	Х	Х
U01.CPU	COM02	Puerto Serial RS485 libre	Х	Х	Х	Х	Х
U01.R01	COM11	Puerto Serial RS232 libre	Х	Х	Х	Х	Х
U01.R01	COM12	Puerto Serial RS232 libre	Х	Х			

Observaciones:

- Por defecto, el puerto Ethernet es 100BASE-TX, con conector RJ45.
- El puerto RS485 tiene las señales DA, DB y GND
- Los puertos RS232 tiene las señales RXD, TXD, RTS, CTS, GND

B. CÁLCULO DPF

B.1. Introducción

El cálculo de Detección de Paso de Falta (DPF) tiene como función detectar faltas eléctricas en la red y reportarlas, de manera de permitir localizar el punto de falla fácilmente. El mismo se implementa como un cálculo en la Unidad de Control RTU115.

El DPF requiere al menos una tarjeta de medida de corriente (06CT o 06RG). Las medidas de corriente se utilizan para detectar sobre-corrientes de fase y homopolar (corriente de neutro).

Para su configuración, el usuario debe elegir una terna de corrientes para detectar faltas de fase. La detección de falta homopolar se puede hacer calculando la corriente homopolar a partir de la terna de corrientes de fase, o midiendo directamente la corriente a través de un canal adicional de corriente, el cual debe ser elegido por el usuario.

La detección del estado de la línea se puede realizar tanto a partir de las medidas de corriente de fase, como a partir de medidas de tensión, para lo cual se requiere una tarjeta de medida de tensión (06VT). La detección por tensión del estado de la línea puede hacerse en una fase o tres fases.

B.2. Parámetros de configuración

La configuración del DPF requiere definir una serie de parámetros de funcionamiento. Los mismos se detallan a continuación.

Ca	álculo DPF - Parámetros de Configuración
Nombre del Parámetro	Descripción
General	
Descripción	Texto descriptivo del cálculo
ID Celda Asociada	Identificación de la celda a la que se asocia el DPF. Opcional.
Configuración de Tensiones	
Modo Procesamiento	Modo de procesamiento de tensión. Se elige entre monofásico o trifásico
Ranura Origen VA	Tarjeta desde donde adquirir las tensiones
Canal Origen VA	Canal de la tensión VA en la tarjeta elegida. Si el modo es trifásico, VB y VC se toman consecutivos al canal elegido.
Configuración de Corrientes	
Modo Procesamiento IN	Modo de procesamiento de la corriente de neutro. Directo o calculado a partir de la terna de corrientes.
Ranura Origen IA	Tarjeta desde donde adquirir las corrientes de fase.
Canal Origen IA	Canal de la corriente IA en la tarjeta elegida. IB e IC se toman consecutivos al canal elegido.
Ranura Origen IN	Tarjeta desde donde adquirir la corriente de neutro. Solo aplica si el modo de procesamiento es Directo.
Canal Origen IN	Canal de la corriente IN en la tarjeta elegida.
Parámetros	
Umbral Falta Fase	Valor de la corriente de umbral de falta de fase, en las unidades elegidas. Si es 0 se deshabilita. En pasos de 1A. No se admite un valor mayor a 125% de la corriente nominal.
Umbral Falta Homopolar	Valor de la corriente de umbral de falta homopolar, en las unidades elegidas. Si es 0 se deshabilita. En pasos de 1A. No se admite un valor mayor a 125% de la corriente nominal.
Tiempo Falta Fase.	Tiempo en decenas ms que debe sobrepasar la corriente de fase el valor de umbral para detectar la falta. Mínimo 20ms. Pasos de 10ms.
Tiempo Falta Homopolar.	Tiempo en decenas ms que debe sobrepasar la corriente homopolar el valor de umbral para detectar la falta. Mínimo 20ms. Pasos de 10ms.
Umbral corriente de línea	Valor de la corriente de fase (en las unidades elegidas), por debajo del cual se considera que se perdió la corriente. Se considera que la línea vuelve a estar activa cuando la corriente está por encima del 120% del valor de umbral. Solo utilizado si modo de detección de línea es por corriente. Mínimo 1A, en pasos de 1A.

Tiempo de confirmación de falta.	Tiempo (en decimas de ms) en que se debe mantener la tensión y la corriente por debajo de los umbrales de pérdida para considerar la falta como válida. Mínimo 40ms. Pasos de 20ms.
Tiempo de restablecimiento	Tiempo (en decimas de ms) durante el cual la línea debe mantenerse activa (tensión por encima del 80% del valor nominal, corriente 120% por encima del umbral) para despejar la falta. Mínimo 40ms, pasos de 20ms.
Tiempo de reset falta	Tiempo desde que se confirmó la falta, luego del cual se da el reset de todas las alarmas. Pasos de 1 minuto. Si es 0, se desactiva el reset automático.
Modo Confirmación de Falta	Se elige si el monitoreo del estado de la línea se hace por tensión, por corriente o por cualquiera de los dos.

<u>Observación</u>: Las relaciones de transformación, así como las unidades de medida y valores nominales de los canales de medida, se determinan en la configuración particular de cada canal de los módulos de medida. Los mismos deben configurarse previamente a configurar los parámetros del cálculo DPF.

B.3. Algoritmo de funcionamiento

La gráfica que se presenta a continuación ilustra el funcionamiento del DPF, permitiendo una clara interpretación de los parámetros de detección.

Una vez que la medida de corriente (ya sea de cualquiera de las fases u homopolar) supera el umbral de falta por un tiempo mayor al tiempo de falta configurado, se indica arranque de falta y pasa a esperar la confirmación de la falta.

La falta se confirma únicamente si se detecta que se perdió la línea (i.e. la protección aguas arriba abrió el circuito), esta condición se cumple si la corriente se encuentra por debajo del umbral de corriente o si la tensión se encuentra por debajo del 60% de la tensión nominal, por un tiempo mayor al tiempo de confirmación de falta. Una vez cumplidas las condiciones, se deja de indicar arranque de falta y se pasa a indicar confirmación de falta. Si no se confirma la falta 60 segundos luego de haber sido detectada (tiempo máximo de confirmación), se descarta como falso positivo.

La falta se despeja si ocurre alguna de las siguientes condiciones:

- La tensión se encuentra por encima del 80% de su valor nominal o la corriente se encuentra por encima del 120% del umbral de corriente, por un tiempo mayor al tiempo de restablecimiento.
- Si la línea no se reestablece por un tiempo mayor al tiempo de reset automático.

• Si se recibe un comando de despejar faltas.

B.4. Tabla de puntos

La tabla de puntos exportada por el cálculo DPF es la siguiente:

Cálculo DPF – Tabla de Puntos			
Nombre	Tipo Punto	Descripción	Unidad
On	EB	DPF en Ejecución	
ld	EI	Identificador de Celda	
Va	EF	Tensión línea neutro fase A	UNI_V
Vb	EF	Tensión línea neutro fase B	UNI_V
Vc	EF	Tensión línea neutro fase C	UNI_V
Vn	EF	Tensión de neutro	UNI_V
la	EF	Corriente fase A	UNI_I
lb	EF	Corriente fase B	UNI_I
lc	EF	Corriente fase C	UNI_I
In	EF	Corriente neutro	UNI_I
ArrFF	EB	Arranque Falta Fase	
ArrFH	EB	Arranque Falta Homopolar	
ConfFF	EB	Confirmación Falta Fase	
ConfFH	EB	Confirmación Falta Homopolar	
IFF	EF	Corriente Falta Fase	UNI_I
IFH	EF	Corriente Falta Homopolar	UNI_I
CntArrFF	EI	Contador Arranque Fase	
CntArrFH	EI	Contador Arranque Homopolar	
CntConfFF	EI	Contador Faltas Fase	
CntConfFH	EI	Contador Faltas Homopolar	
RemFClr	SB	Comando Reset de Falta (Remoto)	
LocFClr	SB	Comando Reset de Falta (Local)	
FTest	SB	Comando Prueba de Falta	
CntClr	SB	Comando Reset de Contadores	

C. CÁLCULO ST3F

C.1. Introducción

El cálculo de Sistema Trifásico ST3F tiene como función determinar un conjunto de magnitudes relativas a un sistema trifásico de potencia.

C.2. Parámetros de configuración

La configuración del ST3F requiere definir una serie de parámetros de funcionamiento. Los mismos se detallan a continuación.

Cálculo ST3F - Parámetros de Configuración				
Nombre del Parámetro Descripción				
General				
Descripción Texto descriptivo del cálculo				
Configuración de Corrientes				
Modo Procesamiento IN	Modo de procesamiento de la corriente de neutro. Directo o			
	calculado a partir de la terna de corrientes.			
Ranura Origen IA	Tarjeta desde donde adquirir las corrientes de fase.			
Canal Origen IA	Canal de la corriente IA en la tarjeta elegida. IB e IC se toman			
	consecutivos al canal elegido.			
Ranura Origen IN	Tarjeta desde donde adquirir la corriente de neutro. Solo aplica si el			
	modo de procesamiento es Directo.			
Canal Origen IN	Canal de la corriente IN en la tarjeta elegida.			
Configuración de Tensiones				
Ranura Origen VA	Tarjeta desde donde adquirir las tensiones			
Canal Origen VA	Canal de la tensión VA en la tarjeta elegida. Se asume VB y VC			
consecutivos al canal elegido.				
Parámetros				
Modo de Red	Modo conexionado de red trifásica. Opciones: modo 3WD o 4WY			
Secuencia de Fases	Sentido de giro de las fases de la red eléctrica. Opciones: horario o			
	antinorario			
Signo factor de potencia	Fórmula de cálculo del signo de factor de potencia. Opciones:			
Persistencia de Energías	Habilita persistencia en memoria no volátil de energía			
Unidad de potencias	LINI. P: Eactor por el cual se dividen los valores de potencia a			
official de potencias	efectos de mostrarlos y enviarlos a la base de datos			
Unidad de energías	LINI E: Eactor por el cual se dividen los valores de energía a			
erildad de eriergiae	efectos de mostrarlos y enviarlos a la base de datos			
Unidad de acumulados	UNL A: Factor por el cual se dividen los valores de acumulados de			
	energía a efectos de mostrarlos y enviarlos a la base de datos.			
Período acumulados de	Tiempo desde que se confirmó la falta, luego del cual se da el reset			
energía	de todas las alarmas. Pasos de 1 minuto. Si es 0, se desactiva el			
5	reset automático.			

<u>Observación</u>: Las relaciones de transformación, así como las unidades de medida y valores nominales de los canales de medida, se determinan en la configuración particular de cada canal de los módulos de medida. Los mismos deben configurarse previamente a configurar los parámetros del cálculo ST3F.

C.3. Tabla de puntos

La tabla de puntos exportada por el cálculo ST3F es la siguiente:

Cálculo ST3F – Tabla de Puntos			
Nombre Tipo Punto Descripción		Unidad	
Va	EF	Tensión línea neutro fase A	Uni_V
Vb	EF	Tensión línea neutro fase B	Uni_V
Vc	EF	Tensión línea neutro fase C	Uni_V
VIn	EF	Tensión línea neutro fase promedio	Uni_V
Vab	EF	Tensión línea línea fases AB	Uni_V
Vbc	EF	Tensión línea línea fases BC	Uni_V
Vca	EF	Tensión línea línea fases CA	Uni V

VII EF Tensión línea línea tases promedio Uni I Ib EF Corriente fase B Uni I Ic EF Corriente fase C Uni I I EF Corriente fase C Uni I Vunb EF Tensión de desbalance % Iunb EF Corriente neutro Uni P Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P Qa EF Potencia activa fase A Uni P Qb EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Sa EF Potencia aparente fase B Uni P Sa EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A Uni P Sc EF Factor de potencia fase A			-	
Ia EF Corriente fase A Uni I Ib EF Corriente fase C Uni I I EF Corriente fase C Uni I Vunb EF Tensión de desbalance % Iunb EF Corriente de desbalance % In EF Corriente neutro Uni I Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase C Uni P Pc EF Potencia cactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase B Uni P Sa EF Potencia aparente fase B Uni P Sa EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A	VII	EF	Tensión línea línea fases promedio	Uni_V
Ib EF Corriente fase B Uni I I EF Corriente fase promedio Uni I Vunb EF Tensión de desbalance % Iunb EF Corriente fase promedio Uni I Pa EF Corriente neutro Uni P Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P P EF Potencia activa fase A Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Sa EF Potencia aparente fase A Uni P Sa EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A PFb EF Factor de potencia fase A PFb EF Factor de potencia fase A </td <td>la</td> <td>EF</td> <td>Corriente fase A</td> <td>Uni_I</td>	la	EF	Corriente fase A	Uni_I
Ic EF Corriente fase C Uni I I EF Corriente fase promedio Uni I Vunb EF Tensión de desbalance % Iunb EF Corriente neutro Uni I Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P Pc EF Potencia activa fase A Uni P Qa EF Potencia reactiva fase A Uni P Qb EF Potencia reactiva fase A Uni P Qc EF Potencia reactiva fase B Uni P Q EF Potencia reactiva fase B Uni P Sa EF Potencia aparente fase A Uni P Sa EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A<	lb	EF	Corriente fase B	Uni I
I EF Corriente fase promedio Uni I Vunb EF Tensión de desbalance % Iunb EF Corriente neutro Uni I Pa EF Cotriente neutro Uni P Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P P EF Potencia activa fase A Uni P Qa EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Sa EF Potencia aparente fase A Uni P Sb EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A PFa EF Factor de potencia fase B PFb EF Factor de potencia fase B PFc EF Factor de potencia fase B PF EF Factor de potencia fase A <td>lc</td> <td>EF</td> <td>Corriente fase C</td> <td>Uni I</td>	lc	EF	Corriente fase C	Uni I
Vunb EF Tension de desbalance % lunb EF Corriente de desbalance % lunb EF Corriente neutro Uni I Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase B Uni P Pc EF Potencia activa fase A Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Sa EF Potencia aparente fase B Uni P Sa EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase C Uni P Sc EF Potencia aparente fase C Uni P Sc EF Potencia aparente fase C Uni P Sc EF Factor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase	1	FF	Corriente fase promedio	Uni I
Value EF Corriente de desbalance % In EF Corriente neutro Uni P Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase C Uni P P EF Potencia activa fase C Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase B Uni P Qa EF Potencia reactiva fase B Uni P Sa EF Potencia aparente fase A Uni P Sa EF Potencia aparente fase A Uni P Sb EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A Uni P PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PFc EF Factor de potencia fa	Vunh	EF	Tensión de desbalance	 %_
Inition EF Corriente neutro Uni I Pa EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P Pc EF Potencia activa fase A Uni P P Ca EF Potencia ractiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Qb EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Q EF Potencia aparente fase C Uni P Sa EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase B PFb EF Factor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase A Valang EF Corriente fase B (ángulo) 0 0 Italang	lunb		Corriente de desbalance	/0
Iff EF Potencia activa fase A Uni P Pb EF Potencia activa fase A Uni P Pc EF Potencia activa fase C Uni P P EF Potencia activa fase C Uni P Qa EF Potencia ractiva fase A Uni P Qa EF Potencia ractiva fase B Uni P Qa EF Potencia ractiva fase A Uni P Qa EF Potencia ractiva fase A Uni P Sa EF Potencia aparente fase A Uni P Sb EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase A PFb EF Factor de potencia fase A PFc EF Tensión linea neutro fase A (ángulo) 0 0 Vatang EF<	luno			/0
Pa EF Potencia activa fase A Uni P Po EF Potencia activa fase B Uni P P EF Potencia activa fase C Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase A Uni P Qa EF Potencia reactiva fase C Uni P Qa EF Potencia reactiva fase C Uni P Sa EF Potencia aparente fase B Uni P Sa EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase B Uni P Sc EF Potencia fase C Uni P PFa EF Factor de potencia fase A PFc EF Factor de potencia fase A PFb EF Factor de potencia fase A PFc EF Factor de potencia fase A Va fang EF Tensión línea neutro fase A (ángulo) 0 0 0 0				
Pb EF Potencia activa fase B Uni. P P EF Potencia activa fase C Uni. P Qa EF Potencia cactiva fase A Uni. P Qb EF Potencia reactiva fase B Uni. P Qc EF Potencia reactiva fase C Uni. P Q EF Potencia reactiva fase C Uni. P Sa EF Potencia aparente fase A Uni. P Sa EF Potencia aparente fase A Uni. P Sc EF Potencia aparente fase A Uni. P Sc EF Potencia aparente fase A Uni. P Sc EF Potencia aparente fase A PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PF EF Factor de potencia fase A PF EF Factor de potencia fase A Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase A (ángulo) ° Ictang <t< td=""><td>Pa</td><td>EF</td><td>Potencia activa fase A</td><td>Uni_P</td></t<>	Pa	EF	Potencia activa fase A	Uni_P
Pc EF Potencia activa fase C Uni P Qa EF Potencia reactiva fase A Uni P Qb EF Potencia reactiva fase B Uni P Qc EF Potencia reactiva fase C Uni P Q EF Potencia reactiva fase A Uni P Sa EF Potencia aparente fase A Uni P Sa EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase C Uni P S EF Potencia fase A PFa EF Factor de potencia fase A PFa EF Factor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase C PFc EF Factor de potencia fase A (ángulo) ° ' Vatang EF Tensión línea neutro fase A (ángulo) ° ' Vatang EF Corriente fase B (ángulo) ° ' Ibtang EF Corriente fase A (ángulo) °	Pb	EF	Potencia activa fase B	Uni_P
P EF Potencia reactiva fase A Uni P Qb EF Potencia reactiva fase A Uni P Qc EF Potencia reactiva fase C Uni P Q EF Potencia reactiva fase C Uni P Q EF Potencia aparente fase A Uni P Sa EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase C Uni P Sc EF Potencia aparente fase A PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase C Vatang EF Tensión línea neutro fase A (ángulo) ° Vatang EF Corriente fase A (ángulo) ° ° Ibtang EF Corriente fase A (ángulo) ° ° AngVI1a EF Angulo V-I fase B ° ° AngVI1b EF Tensión línea neutro fase A, THDN %	Pc	EF	Potencia activa fase C	Uni_P
Qa EF Potencia reactiva fase A Uni P Qb EF Potencia reactiva fase B Uni P Q EF Potencia reactiva total Uni P Sa EF Potencia aparente fase A Uni P Sb EF Potencia aparente fase B Uni P Sb EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase C Uni P S EF Potencia aparente total Uni P Sc EF Potencia aparente total Uni P S EF Factor de potencia fase A PFc EF Factor de potencia fase C PFc EF Factor de potencia fase C Valang EF Tensión línea neutro fase A (ángulo) ° Valang EF Corriente fase B (ángulo) ° Valang EF Angulo V-I fase C (ángulo) ° Iblang EF Corriente fase B (ángulo) ° ° AngVI1a EF Angulo V-I fase A ° °	Р	EF	Potencia activa total	Uni_P
Ob EF Potencia reactiva fase B Uni P Q EF Potencia reactiva fase C Uni P Sa EF Potencia aparente fase A Uni P Sb EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase A PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PFc EF Factor de potencia fase A PF EF Factor de potencia fase C Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase C (ángulo) ° Ictang EF Corriente fase A (ángulo) ° ° Ictang EF Angulo V-I fase A ° ° AngVI1a EF Angulo V-I fase A ° ° AngVI1a EF Tensión línea neutro fase A, THDN <	Qa	EF	Potencia reactiva fase A	Uni_P
Qc EF Potencia reactiva tase C Uni Q EF Potencia reactiva total Uni Sa EF Potencia aparente fase A Uni Sb EF Potencia aparente fase B Uni S EF Potencia aparente total Uni PFa EF Pactor de potencia fase A PFc EF Factor de potencia fase A PFc EF Factor de potencia fase C Valang EF Tensión línea neutro fase A (ángulo) ° Valang EF Tensión línea neutro fase B (ángulo) ° Valang EF Tensión línea neutro fase B (ángulo) ° Iblang EF Corriente fase B (ángulo) ° Ictang EF Corriente fase B (ángulo) ° Ictang EF Angulo V-I fase B ° AngVI1a EF Angulo V-I fase B ° AngVI1b EF Tensión línea neutro fase B, THDN % VcTHDN EF Tensión línea neutro fase B, THDN % IdTHDN <td>Qb</td> <td>EF</td> <td>Potencia reactiva fase B</td> <td>Uni P</td>	Qb	EF	Potencia reactiva fase B	Uni P
Q EF Potencia aparente fase A Uni P Sa EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase C Uni P Sc EF Potencia aparente fase C Uni P Sc EF Potencia aparente total Uni P Sc EF Potencia aparente total Uni P PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PF EF Factor de potencia total Vatang EF Tensión línea neutro fase C (ángulo) ° Votang EF Tensión línea neutro fase C (ángulo) ° Ibtang EF Corriente fase C (ángulo) ° Ictang EF Angulo V-I fase C ° AngVIta EF Angulo V-I fase C ° VaTHDN EF Tensión línea neutro fase A, THDN % VoTHDN EF Tensión línea neutro fase C, THDN % VaTHDN EF Tensión línea neutro fase C, THDN % VaTHDN	Qc	EF	Potencia reactiva fase C	Uni P
Sa EF Potencia aparente fase A Uni P Sb EF Potencia aparente fase A Uni P Sc EF Potencia aparente fase C Uni P S EF Potencia aparente total Uni P PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PFc EF Factor de potencia fase A Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase B (ángulo) ° Votang EF Corriente fase A (ángulo) ° Ibtang EF Corriente fase B (ángulo) ° Ictang EF Angulo V-I fase A ° AngVI1a EF Angulo V-I fase B ° AngVI1b EF Tensión línea neutro fase A, THDN % VaTHDN EF Tensión línea neutro fase B, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % VcTHDN EF Tensión línea neutro fase C, THDN %	0	FF	Potencia reactiva total	Uni P
Sb EF Potencia aparente fase B Uni P Sc EF Potencia aparente fase C Uni P S EF Potencia aparente total Uni P S EF Potencia aparente total Uni P PFa EF Factor de potencia fase A PFb EF Factor de potencia fase A PF EF Factor de potencia fase C Vatang EF Tensión línea neutro fase C (ángulo) ° Vatang EF Tensión línea neutro fase C (ángulo) ° Vatang EF Corriente fase A (ángulo) ° ° Ibtang EF Corriente fase C (ángulo) ° ° Ictang EF Angulo V-I fase A ° ° AngVI1a EF Angulo V-I fase C ° ° AngVI1b EF Tensión línea neutro fase A, THDN % ° VbTHDN EF Tensión línea neutro fase A, THDN % ° VTHDN EF Tensión línea neutro fase A, THDN % ° Vo	Sa Sa	EF	Potencia aparente fase Δ	Lini P
Sb EF Potencia aparente fase C Uni P S EF Potencia aparente total Uni P PFa EF Factor de potencia fase C PFb EF Factor de potencia fase B PFc EF Factor de potencia fase C PF EF Factor de potencia fase A (angulo) ° Vatang EF Tensión línea neutro fase A (ángulo) ° ° Votang EF Corriente fase A (ángulo) ° ° Ibtang EF Corriente fase A (ángulo) ° ° Ibtang EF Angulo V-I fase A ° ° AngVIta EF Angulo V-I fase A ° ° AngVItb EF Angulo V-I fase A ° ° AngVItb EF Tensión línea neutro fase A, THDN % % VaTHDN EF Tensión línea neutro fase C, THDN % % VoTHDN EF Tensión línea neutro fase C, THDN % % VTHDN EF Tensión línea neutro fase C, THDN	<u> </u>		Potonoia aparento faco B	Uni D
SC EF Potencia aparente total Uni P PFa EF Factor de potencia fase A PFb EF Factor de potencia fase B PFc EF Factor de potencia fase C Vatang EF Factor de potencia total Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase C (ángulo) ° Iatang EF Corriente fase A (ángulo) ° Iatang EF Corriente fase C (ángulo) ° AngVita EF Angulo V-I fase A ° AngVita EF Tensión línea neutro fase B, THDN % VaTHDN EF Tensión línea neutro fase A, THDN % VoTHDN EF Tensión línea neutro fase B, THDN % VaTHDN EF Tensión línea neutro fase B, THDN % VaTHDN EF Tensión línea neutro fase B, THDN % VaTHDN EF Tensión línea neutro fase B, THDN % V_THDN EF Tensión línea neutro fase B, THDN	50		Potencia aparente face C	
S EF Potencia aparente total Uni_P PFa EF Factor de potencia fase A PFc EF Factor de potencia fase C PF EF Factor de potencia tase C Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase A (ángulo) ° Votang EF Corriente fase A (ángulo) ° Ibtang EF Corriente fase A (ángulo) ° Ibtang EF Corriente fase A (ángulo) ° Ictang EF Angulo V-I fase A ° AngVI1a EF Angulo V-I fase B ° AngVI1b EF Tensión línea neutro fase A, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % VcTHDN EF Corriente fase A, THDN % VcTHDN EF Corriente fase C, THDN % IbTHDN EF Corriente fase C, THDN % IcTHDN<	50		Potencia aparente lase C	
PFa EF Factor de potencia fase A PFb EF Factor de potencia fase C PF EF Factor de potencia fase C Valang EF Tensión línea neutro fase A (ángulo) ° Valang EF Tensión línea neutro fase B (ángulo) ° Valang EF Tensión línea neutro fase B (ángulo) ° Iatang EF Corriente fase A (ángulo) ° Iatang EF Corriente fase C (ángulo) ° Iatang EF Corriente fase C (ángulo) ° AngVI1a EF Angulo V-I fase A ° AngVI1b EF Angulo V-I fase B ° AngVI1c EF Tensión línea neutro fase A, THDN % VDTHDN EF Tensión línea neutro fase C, THDN % VCTHDN EF Tensión línea neutro fase C, THDN % VCTHDN EF Tensión línea neutro fase C, THDN % VCTHDN EF Tensión línea neutro fase C, THDN % IaTHDN EF Corriente fase A, THDN %	5	EF	Potencia aparente total	Uni_P
PFb EF Factor de potencia fase B PF EF Factor de potencia total Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase C (ángulo) ° Iatang EF Corriente fase A (ángulo) ° Ictang EF Corriente fase B (ángulo) ° Ictang EF Corriente fase A (ángulo) ° AngVI1a EF Angulo V-I fase A ° AngV11b EF Angulo V-I fase B ° AngV11b EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase A, THDN % VcTHDN EF Tensión línea neutro fase A, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % IatHDN EF Corriente fase A, THDN % IatHDN EF Corriente fase A, THDN %	PFa	EF	Factor de potencia fase A	
PFc EF Factor de potencia fase C PF EF Factor de potencia total Vatang EF Tensión línea neutro fase A (ángulo) ° Vctang EF Tensión línea neutro fase A (ángulo) ° Iatang EF Corriente fase A (ángulo) ° Istang EF Corriente fase A (ángulo) ° Ictang EF Corriente fase B (ángulo) ° AngV11a EF Angulo V-I fase A ° AngV11b EF Angulo V-I fase B ° AngV11c EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase C, THDN % VoTHDN EF Tensión línea neutro fase C, THDN % VoTHDN EF Corriente fase B, THDN % V <thdn< td=""> EF Corriente fase B, THDN % IbTHDN EF Corriente fase C, THDN % IcTHDN EF Corriente fase C, THDN % IcTHDN EF Corriente fase C, THDN % IcTHDN<td>PFb</td><td>EF</td><td>Factor de potencia fase B</td><td></td></thdn<>	PFb	EF	Factor de potencia fase B	
PF EF Factor de potencia total Vatang EF Tensión línea neutro fase A (ángulo) ° Votang EF Tensión línea neutro fase B (ángulo) ° Iatang EF Corriente fase B (ángulo) ° Ibtang EF Corriente fase B (ángulo) ° Ictang EF Corriente fase B (ángulo) ° AngVI1a EF Angulo V-I fase A ° AngV11b EF Angulo V-I fase C ° AngV11c EF Angulo V-I fase C ° VaTHDN EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase A, THDN % VcTHDN EF Tensión línea neutro fase A, THDN % V THDN EF Tensión línea neutro fase A, THDN % V THDN EF Tensión línea neutro fase A, THDN % IaTHDN EF Corriente fase A, THDN % IaTHDN EF Corriente fase A, THDN % IcTHDN EF Corriente fase A, THDN %	PFc	EF	Factor de potencia fase C	
Va1ang EF Tensión línea neutro fase A (ángulo) ° Vb1ang EF Tensión línea neutro fase B (ángulo) ° Vc1ang EF Tensión línea neutro fase C (ángulo) ° Ia1ang EF Corriente fase A (ángulo) ° Ib1ang EF Corriente fase C (ángulo) ° Ia1ang EF Corriente fase C (ángulo) ° AngV11a EF Angulo V-I fase A ° AngV11b EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase B, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % V/THDN EF Tensión línea neutro fase C, THDN % V_THDN EF Corriente fase A, THDN % IcTHDN EF Corriente fase C, THDN % IcTHDN EF Corriente fase B, THDN % IcTHDN EF Corriente fase B, THDN % IcTHDN EF Corriente fase C, THDN %	PF	EF	Factor de potencia total	
Vb1 angEFTensión línea neutro fase B (ángulo)°Vc1angEFTensión línea neutro fase C (ángulo)°la1angEFCorriente fase A (ángulo)°lb1angEFCorriente fase B (ángulo)°lc1angEFCorriente fase C (ángulo)°AngVI1aEFAngulo V-I fase A°AngVI1bEFAngulo V-I fase B°AngVI1cEFAngulo V-I fase B°AngVI1bEFTensión línea neutro fase A, THDN%VbTHDNEFTensión línea neutro fase C, THDN%VcTHDNEFTensión línea neutro fase C, THDN%VcTHDNEFTensión línea neutro fase C, THDN%V_THDNEFTensión línea neutro fase C, THDN%V_THDNEFCorriente fase A, THDN%lbTHDNEFCorriente fase C, THDN%lcTHDNEFCorriente fase C, THDN	Va1ang	EF	Tensión línea neutro fase A (ángulo)	0
Vot angEFTensión línea neutro fase C (ángulo)la1angEFCorriente fase A (ángulo)°lo1angEFCorriente fase B (ángulo)°lc1angEFCorriente fase C (ángulo)°lc1angEFCorriente fase C (ángulo)°AngVI1aEFAngulo V-I fase A°AngVI1bEFAngulo V-I fase B°AngVI1cEFAngulo V-I fase C°VaTHDNEFTensión línea neutro fase A, THDN%VbTHDNEFTensión línea neutro fase C, THDN%VoTHDNEFTensión línea neutro fase C, THDN%V_THDNEFTensión línea neutro fase C, THDN%V_THDNEFCorriente fase A, THDN%V_THDNEFCorriente fase B, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%IcTHDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni EActE_netEIEnergía Reactiva ImportadaUni EReaE_impEIEnergía Reactiva TotalUni EReaE_impEIEnergía Reactiva TotalUni E </td <td>Vb1ang</td> <td>FF</td> <td>Tensión línea neutro fase B (ángulo)</td> <td>0</td>	Vb1ang	FF	Tensión línea neutro fase B (ángulo)	0
latang EF Corriente fase A (ángulo) ° lbtang EF Corriente fase B (ángulo) ° lctang EF Corriente fase C (ángulo) ° AngVI1a EF Angulo V-I fase A ° AngVI1b EF Angulo V-I fase B ° AngVI1c EF Angulo V-I fase C ° VaTHDN EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase B, THDN % VoTHDN EF Tensión línea neutro fase C, THDN % VoTHDN EF Tensión línea neutro fase C, THDN % VTHDN EF Corriente fase A, THDN % VTHDN EF Corriente fase A, THDN % laTHDN EF Corriente fase A, THDN % lbTHDN EF Corriente fase C, THDN % lcTHDN EF Corriente fase C, THDN % laTHDN EF Corriente fase C, THDN % lcTHDN EF Corriente fase C, THDN % lcTHDN EF <t< td=""><td>Vc1ang</td><td>FF</td><td>Tensión línea neutro fase C (ángulo)</td><td>0</td></t<>	Vc1ang	FF	Tensión línea neutro fase C (ángulo)	0
InitialEFCorriente fase B (ángulo)°IciangEFCorriente fase B (ángulo)°AngVI1aEFAngulo V-I fase A°AngVI1bEFAngulo V-I fase B°AngVI1cEFAngulo V-I fase C°VaTHDNEFTensión línea neutro fase A, THDN%VbTHDNEFTensión línea neutro fase B, THDN%VCTHDNEFTensión línea neutro fase C, THDN%VCTHDNEFTensión finea neutro fase C, THDN%V_THDNEFTensión fase A, THDN%V_THDNEFCorriente fase A, THDN%IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%IcTHDNEFCorriente fase C, THDN%IcTHDNEFCorriente fase C, THDN%IcTHDNEFCorriente fase C, THDN%I_THDNEFCorriente fase C, THDN%I_THDNEFEclic fase CThon fase CReaE_exp	latang	E. FF	Corriente fase A (ángulo)	0
Ibitality EI Contiente fase D (angulo) ° Ict ang EF Corriente fase C (ángulo) ° AngVI1a EF Angulo V-I fase A ° AngVI1b EF Angulo V-I fase B ° AngVI1c EF Angulo V-I fase C ° VaTHDN EF Tensión línea neutro fase A, THDN % VoTHDN EF Tensión línea neutro fase C, THDN % VCTHDN EF Tensión línea neutro fase C, THDN % V_THDN EF Tensión línea neutro fase C, THDN % V_THDN EF Corriente fase A, THDN % IbTHDN EF Corriente fase A, THDN % IbTHDN EF Corriente fase C, THDN % IcTHDN EF Corriente fase C, THDN % I_THDN EF Corriente fase A, THDN promedio % ActE_exp EI	lb1ang		Corriente face R (ángulo)	0
AngVI1a EF Angulo V-I fase A ° AngVI1b EF Angulo V-I fase B ° AngVI1c EF Angulo V-I fase B ° VaTHDN EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase C, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % VTHDN EF Tensión, THDN promedio % VTHDN EF Corriente fase A, THDN % IaTHDN EF Corriente fase A, THDN % IbTHDN EF Corriente fase C, THDN % IcTHDN EF Frecuencia Hz ActE_exp EI Energía Activa Exportada Uni_E ActE_imp EI Energía Reactiva Ex	lotang		Corriente face C (ángulo)	0
Ang VI1a EF Angulo V-I fase A • Ang VI1c EF Angulo V-I fase C • VaTHDN EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase B, THDN % VCTHDN EF Tensión línea neutro fase C, THDN % V_THDN EF Tensión línea neutro fase C, THDN % V_THDN EF Tensión línea neutro fase C, THDN % IaTHDN EF Corriente fase A, THDN % IbTHDN EF Corriente fase A, THDN % IbTHDN EF Corriente fase B, THDN % IaTHDN EF Corriente fase A, THDN % IaTHDN EF Corriente fase C, THDN % Iathon EF Corriente fase C, THDN % Iathon EF Corriente fase C, THDN % Iathon E				-
AngVI1b EF Angulo V-I fase B ° AngVI1c EF Angulo V-I fase C ° VaTHDN EF Tensión línea neutro fase A, THDN % VbTHDN EF Tensión línea neutro fase B, THDN % VcTHDN EF Tensión línea neutro fase C, THDN % V_THDN EF Tensión, THDN promedio % IaTHDN EF Corriente fase A, THDN % IbTHDN EF Corriente fase B, THDN % IcTHDN EF Corriente fase C, THDN % IcTHDN EF Corriente fase C, THDN % IcTHDN EF Corriente, THDN promedio % F EF Frecuencia Hz ActE_exp EI Energía Activa Exportada Uni E ActE_imp EI Energía Activa Importada Uni E ActE_net EI Energía Reactiva Exportada Uni E ReaE exp EI Energía Reactiva Exportada Uni E ReaE_imp EI Energía Reactiva Total Uni E ReaE_inp	Angvila	EF	Angulo V-I fase A	0
AngVI1cEFAngulo V-I fase C°VaTHDNEFTensión línea neutro fase A, THDN%VbTHDNEFTensión línea neutro fase B, THDN%VcTHDNEFTensión finea neutro fase C, THDN%V THDNEFTensión, THDN promedio%IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%I THDNEFCorriente, THDN promedio%THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_inpEIEnergía Reactiva ExportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_impEIEnergía Reactiva TotalUni_EReaE_inpEIEnergía Reactiva TotalUni_EReaE_totEIEnergía Reactiva TotalUni_AActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Exportada AcumuladaUni_AActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AActE_exp_ac	AngVI1b	EF	Angulo V-I fase B	0
VaTHDNEFTensión línea neutro fase A, THDN%VbTHDNEFTensión línea neutro fase B, THDN%VcTHDNEFTensión línea neutro fase C, THDN%V_THDNEFTensión, THDN promedio%IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase A, THDN%IcTHDNEFCorriente fase C, THDN%ItHDNEFCorriente fase C, THDN%ItHDNEFCorriente, THDN promedio%ItHDNEFCorriente, THDN promedio%ItHDNEFCorriente, THDN promedio%ItHDNEFCorriente, THDN promedio%ActE_expEIEnergía Activa ExportadaUni EActE_impEIEnergía Activa ImportadaUni EActE_totEIEnergía Reactiva ExportadaUni EReaE_expEIEnergía Reactiva ImportadaUni EReaE_impEIEnergía Reactiva ImportadaUni EReaE_impEIEnergía Reactiva ImportadaUni EReaE_impEIEnergía Reactiva ImportadaUni AActE_exp_acEIEnergía Activa Importada AcumuladaUni AActE_exp_acEIEnergía Activa Exportada AcumuladaUni AActE_exp_acEIEnergía Activa Importada AcumuladaUni AActE_exp_acEIEnergía Activa Exportada AcumuladaUni AActE_exp_acEIEnergía Activa Importada AcumuladaUni A <td< td=""><td>AngVI1c</td><td>EF</td><td>Angulo V-I fase C</td><td>0</td></td<>	AngVI1c	EF	Angulo V-I fase C	0
VbTHDNEFTensión línea neutro fase B, THDN%VcTHDNEFTensión línea neutro fase C, THDN%V_THDNEFTensión, THDN promedio%IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%I_THDNEFCorriente, THDN promedio%I_THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva NetaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_netEIEnergía Reactiva NetaUni_EECIr_acSBComando de Reset de EnergíasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Neta AcumuladaUni_AActE_net_acEIEnergía Activa Exportada AcumuladaUni_AActE_exp_acEIEnergía Activa Importada AcumuladaUni_AActE_exp_acEIEnergía Activa Neta AcumuladaUni_AActE_exp_acEIEnergía Reactiva Total AcumuladaUni_AActE_exp_ac <td>VaTHDN</td> <td>EF</td> <td>Tensión línea neutro fase A, THDN</td> <td>%</td>	VaTHDN	EF	Tensión línea neutro fase A, THDN	%
VcTHDNEFTensión línea neutro fase C, THDN%V_THDNEFTensión, THDN promedio%IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%I_THDNEFCorriente, THDN promedio%T_THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_totEIEnergía Activa NetaUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva TotalUni_EReaE_impEIEnergía Reactiva NetaUni_EReaE_netEIEnergía Reactiva TotalUni_EReaE_netEIEnergía Reactiva NetaUni_AActE_exp_acEIEnergía Reactiva TotalUni_AActE_exp_acEIEnergía Activa Exportada AcumuladaActE_exp_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Neta AcumuladaUni_AActE_exp_acEIEnergía Activa Neta AcumuladaUni_AActE_exp_acEIEnergía Activa Neta AcumuladaUni_AActE_net_acEIEnergía Reactiva Neta AcumuladaUni_AActe_net_acEI	VbTHDN	EF	Tensión línea neutro fase B, THDN	%
V_THDNEFTensión, THDN promedio%IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%I_THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_inetEIEnergía Activa NetaUni_EActE_totEIEnergía Reactiva ExportadaUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_inetEIEnergía Reactiva NetaUni_EReaE_totEIEnergía Reactiva TotalUni_EECIr_acSBComando de Reset de EnergíasActE_exp_acEIEnergía Activa Importada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Importada AcumuladaUni_AActE_tot acEIEnergía Reactiva Total AcumuladaUni_AActE_tot acEIEnergía Reactiva Exportada AcumuladaUni_AActE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AActE_tot acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada Acumu	VcTHDN	EF	Tensión línea neutro fase C, THDN	%
IaTHDNEFCorriente fase A, THDN%IbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%I_THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EActE_totEIEnergía Reactiva TotalUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_netEIEnergía Reactiva TotalUni_EReaE_netEIEnergía Reactiva TotalUni_EReaE_totEIEnergía Reactiva TotalUni_EECIr_acSBComando de Reset de EnergíasActE_exp_acEIEnergía Activa Importada AcumuladaUni_AActE_imp_acEIEnergía Activa Total AcumuladaUni_AActE_net_acEIEnergía Activa Total AcumuladaUni_AActE_net_acEIEnergía Reactiva Total AcumuladaUni_AActE_exp_acEIEnergía Reactiva Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_A<	V THDN	EF	Tensión, THDN promedio	%
IbIbIbIbTHDNEFCorriente fase B, THDN%IcTHDNEFCorriente fase C, THDN%I_THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EActE_totEIEnergía Reactiva TotalUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_expEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_netEIEnergía Reactiva TotalUni_EReaE_netEIEnergía Reactiva TotalUni_EClrSBComando de Reset de EnergíasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_net_acEIEnergía Activa Neta AcumuladaUni_AActE_net_acEIEnergía Activa Exportada AcumuladaUni_AActE_net_acEIEnergía Activa Exportada AcumuladaUni_AActE_tot_acEIEnergía Reactiva Total AcumuladaUni_AReaE_exp acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp acEIEnergía Reactiva Exportada Acumul	laTHDN	FF	Corriente fase A. THDN	%
InstructInstructInstructICTHDNEFCorriente fase C, THDN%I_THDNEFCorriente, THDN promedio%FEFFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EActE_totEIEnergía Activa TotalUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_totEIEnergía Reactiva TotalUni_EReaE_totEIEnergía Reactiva TotalUni_EECIr_acSBComando de Reset de EnergíasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Exportada AcumuladaUni_AActE_net_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Total AcumuladaUni_AActE_tot_acEIEnergía Reactiva Exportada AcumuladaUni_AActE_net_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reacti	IbTHDN	FF	Corriente fase B THDN	%
InternationImage: Contente face 0, find the face		EF	Corriente fase C. THDN	%
FEIFrecuenciaHzActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EActE_totEIEnergía Activa TotalUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_intpEIEnergía Reactiva ImportadaUni_EReaE_totEIEnergía Reactiva NetaUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Importada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Importada AcumuladaUni_AActE_tot acEIEnergía Activa Importada AcumuladaUni_AActE_tot acEIEnergía Reactiva Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Neta AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Neta AcumuladaUni_			Corriente THDN promodio	/0
FErFrequenciaFizActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EActE_totEIEnergía Activa TotalUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva NetaUni_EReaE_intpEIEnergía Reactiva NetaUni_EReaE_totEIEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Importada AcumuladaUni_AActE_imp_acEIEnergía Activa Neta AcumuladaUni_AActE_tot_acEIEnergía Activa Total AcumuladaUni_AActE_tot_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Importada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_A				/0
ActE_expEIEnergía Activa ExportadaUni_EActE_impEIEnergía Activa ImportadaUni_EActE_netEIEnergía Activa NetaUni_EActE_totEIEnergía Activa TotalUni_EReaE_expEIEnergía Reactiva ExportadaUni_EReaE_impEIEnergía Reactiva ImportadaUni_EReaE_impEIEnergía Reactiva NetaUni_EReaE_netEIEnergía Reactiva NetaUni_EReaE_totEIEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Neta AcumuladaUni_AActE_tot acEIEnergía Activa Neta AcumuladaUni_AActE_tot acEIEnergía Activa Total AcumuladaUni_AActE_tot acEIEnergía Reactiva Total AcumuladaUni_AReaE_exp_acEIEnergía Activa Importada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Neta Ac				
ActE_impElEnergía Activa ImportadaUni_EActE_netElEnergía Activa NetaUni_EActE_totElEnergía Activa TotalUni_EReaE_expElEnergía Reactiva ExportadaUni_EReaE_impElEnergía Reactiva ImportadaUni_EReaE_impElEnergía Reactiva NetaUni_EReaE_netElEnergía Reactiva NetaUni_EReaE_totElEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasActE_exp_acElEnergía Activa Exportada AcumuladaUni_AActE_imp_acElEnergía Activa Importada AcumuladaUni_AActE_net_acElEnergía Activa Neta AcumuladaUni_AActE_tot acElEnergía Activa Importada AcumuladaUni_AActE_tot acElEnergía Activa Importada AcumuladaUni_AReaE_exp_acElEnergía Reactiva Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acEl </td <td>ActE_exp</td> <td>EI</td> <td>Energia Activa Exportada</td> <td></td>	ActE_exp	EI	Energia Activa Exportada	
ActE_netElEnergía Activa NetaUni_EActE_totElEnergía Activa TotalUni_EReaE_expElEnergía Reactiva ExportadaUni_EReaE_impElEnergía Reactiva ImportadaUni_EReaE_netElEnergía Reactiva NetaUni_EReaE_totElEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acElEnergía Activa Exportada AcumuladaUni_AActE_imp_acElEnergía Activa Importada AcumuladaUni_AActE_tot_acElEnergía Activa Neta AcumuladaUni_AActE_tot_acElEnergía Activa Importada AcumuladaUni_AActE_tot_acElEnergía Activa Importada AcumuladaUni_AReaE_exp_acElEnergía Activa Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_A	ActE_imp	El	Energia Activa Importada	Uni_E
ActE_totElEnergía Activa TotalUni_EReaE_expElEnergía Reactiva ExportadaUni_EReaE_impElEnergía Reactiva ImportadaUni_EReaE_netElEnergía Reactiva NetaUni_EReaE_totElEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acElEnergía Activa Exportada AcumuladaUni_AActE_imp_acElEnergía Activa Importada AcumuladaUni_AActE_tot_acElEnergía Activa Neta AcumuladaUni_AActE_tot_acElEnergía Activa Total AcumuladaUni_AActe_tot_acElEnergía Activa Importada AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acElEnergía Reactiva Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total AcumuladaUni_A <td>ActE_net</td> <td>El</td> <td>Energía Activa Neta</td> <td>Uni_E</td>	ActE_net	El	Energía Activa Neta	Uni_E
ReaE_expElEnergía Reactiva ExportadaUni_EReaE_impElEnergía Reactiva ImportadaUni_EReaE_netElEnergía Reactiva NetaUni_EReaE_totElEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acElEnergía Activa Exportada AcumuladaUni_AActE_imp_acElEnergía Activa Importada AcumuladaUni_AActE_tot_acElEnergía Activa Neta AcumuladaUni_AActE_tot_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acElEnergía Activa Importada AcumuladaUni_AReaE_exp_acElEnergía Activa Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total Acum	ActE_tot	EI	Energía Activa Total	Uni_E
ReaE_impEIEnergía Reactiva ImportadaUni_EReaE_netEIEnergía Reactiva NetaUni_EReaE_totEIEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_tot_acEIEnergía Activa Neta AcumuladaUni_AActE_tot_acEIEnergía Activa Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A	ReaE_exp	EI	Energía Reactiva Exportada	Uni_E
ReaE_netEIEnergía Reactiva NetaUni_EReaE_totEIEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_tot_acEIEnergía Activa Neta AcumuladaUni_AActE_tot_acEIEnergía Activa Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_net_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A	ReaE_imp	EI	Energía Reactiva Importada	Uni_E
ReaE_totEIEnergía Reactiva TotalUni_EECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Neta AcumuladaUni_AActE_tot_acEIEnergía Activa Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A	ReaE net	EI	Energía Reactiva Neta	Uni E
ECIrSBComando de Reset de EnergíasECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Exportada AcumuladaActE_imp_acEIEnergía Activa Importada AcumuladaActE_net_acEIEnergía Activa Neta AcumuladaActE_tot_acEIEnergía Activa Total AcumuladaActE_tot_acEIEnergía Reactiva Exportada AcumuladaReaE_exp_acEIEnergía Reactiva AcumuladaReaE_imp_acEIEnergía Reactiva AcumuladaReaE_imp_acEIEnergía Reactiva AcumuladaReaE_imp_acEIEnergía Reactiva Importada AcumuladaReaE_imp_acEIEnergía Reactiva Importada AcumuladaReaE_imp_acEIEnergía Reactiva Importada AcumuladaReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A	ReaE tot	EI	Energía Reactiva Total	Uni E
ECIr_acSBComando de Reset de AcumuladasActE_exp_acEIEnergía Activa Exportada AcumuladaUni_AActE_imp_acEIEnergía Activa Importada AcumuladaUni_AActE_net_acEIEnergía Activa Neta AcumuladaUni_AActE_tot_acEIEnergía Activa Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_net_acEIEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A	ECIr	SB	Comando de Beset de Energías	
ActE_exp_acElEnergía Activa Exportada AcumuladaUni_AActE_imp_acElEnergía Activa Importada AcumuladaUni_AActE_net_acElEnergía Activa Neta AcumuladaUni_AActE_tot_acElEnergía Activa Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_net_acElEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total AcumuladaUni_A	ECIr ac	SB	Comando de Reset de Acumuladas	
ActE_imp_acElEnergía Activa Exportada AcumuladaOlli_AActE_imp_acElEnergía Activa Importada AcumuladaUni_AActE_net_acElEnergía Activa Neta AcumuladaUni_AActE_tot_acElEnergía Activa Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_net_acElEnergía Reactiva Importada AcumuladaUni_AReaE_net_acElEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total AcumuladaUni_A	ActE evo ac	FI	Energía Activa Exportada Acumulada	llni∆
ActE_inip_acEliEnergía Activa Importada AcumuladaUni_AActE_net_acElEnergía Activa Neta AcumuladaUni_AActE_tot_acElEnergía Activa Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_net_acElEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acElEnergía Reactiva Importada AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total AcumuladaUni_A	ActE imp ac		Energía Activa Importada Acumulada	
Acte_net_acEnergíaEnergía Activa Neta AcumuladaUni_AActe_tot_acElEnergía Activa Total AcumuladaUni_AReaE_exp_acElEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acElEnergía Reactiva Importada AcumuladaUni_AReaE_net_acElEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total AcumuladaUni_A			Energía Activa Importava Acumulada	
ACIE_TOT_acEIEnergia Activa Total AcumuladaUni_AReaE_exp_acEIEnergía Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_net_acEIEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A			Energia Activa Ineta Acumulada	
Heat_exp_acEIEnergia Reactiva Exportada AcumuladaUni_AReaE_imp_acEIEnergía Reactiva Importada AcumuladaUni_AReaE_net_acEIEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acEIEnergía Reactiva Total AcumuladaUni_A	ACIE_TOT_AC		Energia Activa Total Acumulada	
Heat_imp_acEIEnergia Reactiva Importada AcumuladaUni_AReat_net_acEIEnergía Reactiva Neta AcumuladaUni_AReat_tot_acEIEnergía Reactiva Total AcumuladaUni_A	<u>exp_ac</u>		Energia Reactiva Exportada Acumulada	Uni_A
ReaE_net_acElEnergía Reactiva Neta AcumuladaUni_AReaE_tot_acElEnergía Reactiva Total AcumuladaUni_A	ReaE_imp_ac	EI	Energía Reactiva Importada Acumulada	Uni_A
ReaE_tot_ac EI Energía Reactiva Total Acumulada Uni_A	ReaE_net_ac	El	Energía Reactiva Neta Acumulada	Uni_A
	ReaE_tot_ac	EI	Energía Reactiva Total Acumulada	Uni_A

D. MÓDULO DE ALIMENTACIÓN

D.1. Introducción

El módulo UIT115-FUE brinda la alimentación necesaria para:

- los componentes activos de la UIT115, alimentados en 24Vcc.
- el equipo de comunicaciones (no incluido), alimentado en 12Vcc.
- los elementos de maniobra, que se accionan en 48Vcc
- la polarización de señales digitales, que se realiza en 48Vcc.

La supervisión del módulo UIT115-FUE se implementa mediante una serie de automatismos que ejecuta la unidad de control U01.

En las próximas secciones se describe la arquitectura del módulo y los algoritmos de supervisión.

D.2. Arquitectura

El módulo UIT115-FUE combina una fuente AC/DC, un cargador de baterías y un banco de baterías para proveer las tensiones requeridas según el siguiente esquema:

Donde:

- Q01 es una llave termo-magnética, Q02 es una llave seccionadora
- K01 es un relé normal cerrado, K02 es un relé normal abierto
- U06 es una fuente AC/DC
- U07 es un cargador de baterías
- U11 es módulo de redundancia
- U12 es un módulo auxiliar (booster)
- B01-B04 es un banco de 4 baterías
- U08 y U09 son conversores DC/DC

Esta arquitectura permite continuar operando en caso de pérdida de la alimentación principal así como en caso de falla o ausencia de las baterías.

La tensión de salida de la fuente de alimentación AC/DC U06 y del cargador U07 son ajustadas para asegurar que, en presencia de la alimentación principal CA, sea U06 quien entregue la energía al resto del sistema y U07 se encargue únicamente de mantener la carga del banco de baterías.

El banco de baterías se compone de 4 baterías 12Vcc 12Ah conectadas en serie. Fue dimensionado para garantizar que la UIT115 pueda funcionar durante al menos 6 horas alimentado de las baterías, siendo capaz de realizar en este período de tiempo un mínimo de 4 ciclos de maniobras.

El módulo U12 es una tarjeta auxiliar cuya función es reforzar la tensión de alimentación de entrada de los módulos U08 y U09, evitando caídas cuando hay picos de consumo.

El módulo de redundancia U11 permite alimentar las cargas indistintamente desde la fuente de alimentación U06 o desde el banco de baterías. Dispone de contactos auxiliares para indicar la presencia de las tensiones de entrada, que son monitoreados internamente.

El conversor DC/DC U08 se alimenta de los 48Vcc y tiene una salida de 12Vcc 30W, destinada al equipo de comunicaciones (no incluido).

El conversor DC/DC U09 se alimenta de los 48Vcc y tiene una salida de 24Vcc 30W, destinada a energizar los componentes activos de la UIT115: las RTU115 que componen el módulo principal UIT115-MP, el panel de operaciones UIT115-PO y la(s) tarjeta(s) auxiliar(es) UIT115-IO.

La entrada de alimentación UIT115-FUE se protege con una llave termo-magnética (Q01). La llave cuenta con un contacto auxiliar, que es monitoreado internamente. Adicionalmente, se realiza una medida de la tensión de alimentación, a la salida de Q01. La ausencia de alimentación alterna se señaliza en el panel de operación (FALTA AC) y se reporta por comunicaciones.

Para proteger el banco de baterías contra descargas profundas, se utiliza un relé normal abierto (K02). Frente a una ausencia de la alimentación principal CA, el equipo comienza a trabajar desde baterías. Si la tensión de las mismas llega a un nivel crítico, el relé será comandado a su posición normal, lo que desconectará las baterías y apagará al sistema. Al regresar la alimentación CA el relé conectará nuevamente las baterías.

El estado de las baterías es testeado de forma periódica. El test consiste en desconectar la entrada de alimentación y monitorear durante un tiempo la descarga de la tensión de las baterías. Para la desconexión se utiliza un relé auxiliar normal cerrado (K01). La medida de la tensión de la batería se realiza entre K02 y Q02. El resultado de este test es señalizado en el panel de operación (FALLA BAT) y reportado por comunicaciones. La señalización permanece hasta tanto se realice un nuevo test o se reinicie la UIT115.

D.3. Supervisión de Alimentación – Alarma de Falta AC

El objetivo de este bloque del automatismo es señalizar mediante una alarma en caso de ausencia de tensión.

Variables de Entrada

Nombre	Descripción	Тіро
m_ii_fVAC	Medida de tensión de alimentación VAC	Entrada Valor LREAL desde BD:EF

Variables de Salida

Nombre	Descripción	Тіро
m_oi_bFaltaVAC	Alarma de ausencia de VAC	Salida Valor BOOL hacia BD:EB

Constantes

Nombre	Descripción	Tipo	Valor
k_fUmbralVAC	Umbral para presencia de tensión (en V)	LREAL	185.0

<u>Algoritmo</u>

Se señaliza ausencia de tensión de alimentación cuando la medida m_ii_fVAC es inferior a la constante k_fUmbralVAC.

D.4. Supervisión de Baterías – Nivel crítico

El objetivo de este bloque del automatismo es proteger a las baterías de una descarga profunda.

Variables of	de Entrada
--------------	------------

Nombre Descripción	Тіро
--------------------	------

m_ii_fBAT	Medida de tensión de baterías VBAT	Entrada Valor LREAL desde BD:EF
m_io_nTiempoLowBAT	Comando setpoint tiempo nivel crítico de baterías. En segundos. Por defecto 30 segundos.	Entrada Comando DINT desde BD:SI

Variables de Salida

Nombre	Descripción	Тіро
m_oi_bLowBAT	Alarma de nivel crítico de batería	Salida Valor BOOL hacia BD:EB
m_oi_nTiempoLowBAT Setpoint de tiempo de nivel crítico de		Salida Valor DINT hacia BD:EI
	baterías antes de apagar	
m_oo_bCmdK2	Comando para relé auxiliar K02	Salida Comando BOOL hacia BD:SB

Constantes

Nombre	Descripción	Тіро	Valor
k_fUmbralVBAT	Umbral para nivel crítico de batería (en	LREAL	42.0
	V)		
k_nTiempoLowBAT	Valor por defecto de tiempo nivel crítico	DINT	30
	de baterías (en segundos)		

<u>Algoritmo</u>

Al arranque del programa se cierra el relé K02, conectando las baterías al resto del sistema.

Frente a una pérdida de alimentación de alterna, se compara el nivel de tensión de las baterías m_iifBAT con el umbral k_fUmbralVBAT. En caso de estar debajo de dicho umbral durante un período de tiempo superior a m_oi_nTiempoLowBA segundos, se considera que hay riesgo de descarga profunda de las baterías y se procede a abrir el relé K02. Esto provoca que las baterías sean desconectadas del sistema y por lo tanto, el equipo se apaga.

El restablecimiento se dará sin necesidad de intervención del operador, cuando se recupere la alimentación de alterna, ya que el equipo encenderá nuevamente y, como fue mencionado anteriormente, el programa se encarga antes que nada de cerrar el relé K02. Las baterías quedarán conectadas nuevamente y comenzarán a cargarse.

D.5. Supervisión de Baterías – Test de Capacidad

El objetivo de este bloque del automatismo es evaluar la capacidad de las baterías de forma de poder anticipar la necesidad de reemplazar las mismas.

Nombre	Descripción	Tipo
m_ii_fBAT	Medida de tensión de baterías VBAT	Entrada Valor LREAL desde BD:EF
m_ii_b48V1	Estado de alimentación 48V principal	Entrada Valor BOOL desde BD:EB
m_io_bCmdTest	Comando ejecución manual ensayo capacidad de carga de baterías	Entrada Comando BOOL desde BD:SB
m_io_bTestStartReset	Comando reinicio temporizador de ensayo automático	Entrada Comando BOOL desde BD:SB
m_io_fUmbralVBATSP	Comando setpoint umbral tensión de descarga. En V. Por defecto 50V	Entrada Comando FLOAT desde BD:SF
m_io_nTiempoCargaSP	Comando setpoint tiempo de precarga batería. En minutos. Por defecto 600min (10 horas)	Entrada Comando DINT desde BD:SI
m_io_nTiempoDescSP	Comando setpoint tiempo de descarga batería. En minutos. Por defecto 300min (5 horas)	Entrada Comando DINT desde BD:SI
m_io_nPeriodoTestSP	Comando setpoint período de ensayo automático. En horas. Por defecto 120h (5 días)	Entrada Comando DINT desde BD:SI

Variables de Entrada

Variables de Salida

Nombre	Descripción	Тіро	
m_oo_bCmdK1	Comando para relé auxiliar K01	Salida Comando BOOL hacia BD:SB	
m_oo_bCmdK2	Comando para relé auxiliar K02	Salida Comando BOOL hacia BD:SB	
m_oi_bFallaVBAT	Falla o ausencia de baterías	Salida Valor BOOL hacia BD:EB	
m_oi_bFallaCapBAT	Falla capacidad baterías	Salida Valor BOOL hacia BD:EB	
m_oi_bFaltaBATPanel	Alarma Falla Baterías (OR de las dos anteriores)	Salida Valor BOOL hacia BD:EB	
m_oi_bFallaK1	Falla de relé K01: no es posible abrir la alimentación AC para realizar el ensayo de capacidad de carga	Salida Valor BOOL hacia BD:EB	
m_oi_bTestDescBAT	Ensayo de capacidad de carga en ejecución	Salida Valor BOOL hacia BD:EB	
m_oi_nEstadoTest	Estado de máquina de estados que rige el ensayo de capacidad de baterías.	Salida Valor DINT hacia BD:EI	
m_oi_nTiempoTest	Tiempo transcurrido de ensayo de capacidad de baterías (en minutos)	Salida Valor DINT hacia BD:EI	
m_oi_nTiempoCarga	Tiempo transcurrido con alimentación AC ininterrumpida (en minutos)	Salida Valor DINT hacia BD:EI	
m_oi_nTiempoDescSP	Setpoint de tiempo de duración ensayo de capacidad de carga de baterías (en minutos)	Salida Valor DINT hacia BD:EI	
m_oi_nTiempoCargaSP	Setpoint de tiempo de carga previo a ensayo de capacidad (en minutos)	Salida Valor DINT hacia BD:EI	
m_oi_fUmbralDescBATSP	Setpoint de umbral de descarga del ensayo de capacidad (en V)	Salida Valor FLOAT hacia BD:EF	
m_oi_nProximoTest	Contador de tiempo para próximo test (en horas)	Salida Valor DINT hacia BD:EI	
m_oi_nPeriodoTestSP	Setpoint de periodo de test (en horas)	Salida Valor DINT hacia BD:EI	

Constantes

Nombre	Descripción	Тіро	Valor
k_fUmbralDescBAT	Valor por defecto del umbral de descarga	LREAL	50.0
	de baterías (en V)		
k_nPeriodoTest	Valor por defecto del período de ensayo	DINT	120
	de baterías (en horas)		
k_nTiempoCargaBAT	Valor por defecto del tiempo de carga de	DINT	600
	baterías requerido antes de comenzar un		
	test (en minutos)		
k_nTiempoDescBAT	Valor por defecto del tiempo del ensayo	DINT	300
	de descarga de baterías (en minutos)		

<u>Algoritmo</u>

El ensayo de capacidad de baterías se ejecuta de forma periódica (m_oi_nPeriodoTestSP). La variable m_oi_nProximoTest indica el tiempo que falta para iniciar el próximo test.

El ensayo consiste en:

- 1. Verificar que el equipo haya estado conectado a la alimentación de alterna por un tiempo prudencial (m_oi_nTiempoCarga > m_oi_nTiempoCargaSP).
- Verificar que las baterías estén presentes y tengan un nivel de tensión aceptable: se abre K02 y se verifica que m_ii_fBAT > m_oi_fUmbralDescBATSP. Si esta condición no se cumple, se enciende una alarma (m_oi_bFallaVBAT) y se da por terminado el test. En cualquier caso, se cierra nuevamente K02.
- 3. Se desconecta la alimentación AC, abriendo el relé K01.
- 4. Durante el tiempo de duración de ensayo configurado (m_oi_nTiempoDescSP), se monitorea el valor de la tensión de baterías. Si la tensión de baterías se mantiene en los niveles aceptados (m_ii_fBAT > m_oi_fUmbralDescBATSP), el ensayo concluye exitosamente. En caso contrario, se enciende una alarma (m_oi_bFallaCapBAT) y se da por terminado el test. En cualquier caso, se cierra nuevamente K01.

Mediante comandos, es posible forzar el inicio del ensayo (m_io_bCmdTest) así como reiniciar los temporizadores (m_io_bTestStartReset).

El programa tiene algunos setpoints modificables por el usuario:

- Umbral de descarga batería (en V). Valor por defecto: k_fUmbralDescBAT = 50V.
- Tiempo de carga de baterías requerido para dar inicio a un ensayo (en minutos). Valor por defecto: k_nTiempoCargaBAT = 600min (10h).
- Duración del ensayo de capacidad de las baterías (en minutos). Valor por defecto k_nTiempoDescBAT = 300min (5h)
- Periodo de ejecución del test (en horas). Valor por defecto: k_nPeriodoTest = 120h (5 días).

En todos los casos, un comando con valor 0 fuerza a utilizar los valores por defecto.

D.6. Auxiliares

El objetivo de este bloque del automatismo es generar algunos estados auxiliares para simplificar la presentación en el Panel de Operaciones y en el Display Virtual.

Variables de Entrada

Nombre	Descripción	Тіро
m_ii_b48VM	Estado alimentación elementos de	Entrada Valor BOOL desde BD:EB
	maniobra.	
m_ii_bCmdK1St	Estado de salida de comando de relé K01	Entrada Valor BOOL desde BD:EB
m_ii_bQ1	Estado de la llave Q01	Entrada Valor BOOL desde BD:EB

Variables de Salida

Nombre	Descripción	Тіро
m_oi_bFaltaEMPanel	Alerta falta tensión de elementos de	Salida Valor BOOL hacia BD:EB
	maniobra, acorde a niveles de PO	
m_oi_bQ1StInv	Estado de la llave Q01, acorde a	Salida Valor BOOL hacia BD:EB
	niveles de Display Virtual	
m_oi_bK1St	Estado del relé K1, acorde a niveles de	Salida Valor BOOL hacia BD:EB
	Display Virtual	

<u>Algoritmo</u>

Se invierten algunas señales con el objetivo de disponerlas en la base de datos con los niveles requeridos por otros módulos.